中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius. 2022. Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu. Journal of Groundwater Science and Engineering, 10(4): 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005
Citation: Dr Muthamilselvan A, Anamika Sekar, Emmanuel Ignatius. 2022. Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu. Journal of Groundwater Science and Engineering, 10(4): 367-380. doi: 10.19637/j.cnki.2305-7068.2022.04.005

Identification of groundwater potential in hard rock aquifer systems using Remote Sensing, GIS and Magnetic Survey in Veppanthattai, Perambalur, Tamilnadu

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Table 1.  Lineament density and its areal size

    Density range (km/km2)Density gradeSize (km2)
    0.00 – 0.46Very low145
    0.46 – 0.77Low144
    0.77 – 1.06Moderate132
    1.06 – 1.39High100
    1.39 – 2.08Very High48
    下载: 导出CSV

    Table 2.  Drainage density and its areal size

    Density range (km/km2)Density gradeSize (km2)
    0.12 – 1.34Very Low81
    1.34 – 2.03Low161
    2.03 – 2.69Moderate185
    2.69 – 3.49High115
    3.49 – 5.15Very High32
    下载: 导出CSV

    Table 3.  Pairwise comparison matrix rating

    Intensity of importanceDefinitionExplanation
    1 Equal importance Two activities contribute equally to the objective
    3 Moderate importance Experience and judgment slightly favour one over another
    5 Strong importance Experience and judgement strongly favour one over another
    7 Very strong importance Activity is strongly favoured and its dominance is demonstrated
    9 Absolute importance Importance of one over another affirmed on the highest possible order
    2,4,6,8 Intermediate values Used to represent compromise between priorities listed above
    Reciprocal of above non-zero numbers If activity I has one of the above non-zero numbers assigned to it when compared with activity j, then j has the reciprocal value when compared with i
    下载: 导出CSV

    Table 4.  Pairwise Comparison Matrix

    Item DescriptionLULCNDVIWetnessLDDDLithologySoilSlopeDist to Magnetic BreaksGeomorphology
    LULC1.001.001.000.250.502.003.002.000.250.50
    NDVI1.001.001.000.250.502.003.002.000.250.50
    Wetness1.001.001.000.250.502.003.002.000.250.50
    Lineament density4.004.004.001.002.006.007.006.001.002.00
    Drainage density2.002.002.000.501.004.005.004.000.501.00
    Lithology0.500.500.500.170.251.002.001.000.160.25
    Soil0.330.330.330.140.200.501.000.500.140.20
    Slope0.500.500.500.170.251.002.001.000.160.25
    Dist to Magnetic Breaks4.004.004.001.002.006.257.146.251.002.00
    Geomorphology2.002.002.000.501.004.005.004.000.501.00
    下载: 导出CSV

    Table 5.  Normalized matrix with criteria weights

    Item descriptionLULCNDVIWetnessLDDDLithologySoilSlopeDistance to magnetic breaksGeomorphologyCriteria weights
    LULC0.0610.0610.0610.0590.0610.0700.0790.0700.0590.0610.064
    NDVI0.0610.0610.0610.0590.0610.0700.0790.0700.0590.0610.064
    Wetness0.0610.0610.0610.0590.0610.0700.0790.0700.0590.0610.064
    Lineament density0.2450.2450.2450.2370.2440.2090.1840.2090.2380.2440.230
    Drainage density0.1220.1220.1220.1180.1220.1390.1310.1390.1190.1220.126
    Lithology0.0310.0310.0310.0390.0300.0350.0520.0350.0380.0300.035
    Soil0.0200.0200.0200.0340.0240.0170.0260.0170.0330.0240.024
    Slope0.0310.0310.0310.0390.0300.0350.0520.0350.0380.0300.035
    Distance to Magnetic breaks0.2450.2450.2450.2370.2440.2170.1870.2170.2380.2440.232
    Geomorphology0.1220.1220.1220.1180.1220.1390.1310.1390.1190.1220.126
    下载: 导出CSV
  • Aina, Adebayo. 1986. Reduction to equator, reduction to pole and orthogonal reduction of magnetic profiles. Exploration Geophysics, 17(3): 141−145. doi: 10.1071/EG986141

    Kumar AV, Mondal NC, Ahmed S. 2020. Identification of groundwater potential zones using RS, GIS and AHP techniques: A case study in a part of Deccan Volcanic Province (DVP), Maharashtra, India. Journal of the Indian Society of Remote Sensing: 497−511. doi: 10.1007/s12524-019-01086-3

    Anbazhagan S, Jothibasu A. 2016. Geoinformatics in groundwater potential mapping and sustainable development: A case study from southern India. Hydrological Sciences Journal, 61(6): 1109−1123. doi: 10.1080/02626667.2014.990966

    Arshad A, Zulfiqar A. 2012. Integration of groundwater flow modeling and GIS. In Water Resources Management and Modeling edited by Dr. Purna Nayak. IntechOpen.

    Chandio IA, Matori ANB, Khamaruzaman B, et al. 2013. GIS-based analytic hierarchy process as a multicriteria decision analysis instrument: A review. Arabian Journal of Geosciences: 3059−3066. doi: 10.1007/s12517-012-0568-8

    Das, Sujit. 2017. Delineation of groundwater potential zone in hard rock terrain in Gangajalghati block, Bankura district, India using remote sensing and GIS techniques. Modeling Earth Systems and Environment, 3(4): 1589−1599. doi: 10.1007/s40808-017-0396-7

    Dewashish K, Krishnamurthy NS. 2006. Utility of magnetic data in delineation of groundwater potential zones in hard rock terrain. Current Science, 91: 1456−1458.

    Khodaei K, Nassery HR. 2013. Groundwater exploration using remote sensing and geographic information systems in a semi-arid area (Southwest of Urmieh, Northwest of Iran). Arabian Journal of Geosciences: 1229−1240. doi: 10.1007/s12517-011-0414-4

    Krishnan R, Sanjay J, Gnanaseelan C, et al. 2020. Assessment of climate change over the Indian Region. 1. Springer: Singapore. doi: 10.1007/978-981-15-4327-2

    Liu QS, Liu GH, Huang C, et al. 2014. A tasseled cap transformation for Landsat 8 OLI TOA reflectance images. In IEEE Geoscience and Remote Sensing Symposium: 541−544.

    Ma WM, Zhang XC, Zhen Q, et al. 2016. Effect of soil texture on water infiltration in semiarid reclaimed land. Water Quality Research Journal, 51(1): 33−41. doi: 10.2166/wqrjc.2015.025

    Malczewski, Jacek. 1999. GIS and Multicriteria Decision Analysis. Wiley.

    Mallick J, Khan RA, Ahmed M, et al. 2019. Modeling groundwater potential zone in a semi-arid region of Aseer using Fuzzy-AHP and geoinformation techniques. Water, 11(12). doi: 10.3390/w11122656

    Mohammadi-Behzad HR, Charchi A, Kalantari N, et al. 2019. Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia–Keynow watershed, southwest of Iran. Carbonates and Evaporites: 1307–1319.

    Muthamilselvan A, Rajasekaran N, Suresh R. 2019. Mapping of Hard rock aquifer system and artificial recharge zonation through remote sensing and GIS approach in parts of Perambalur district of Tamil Nadu, India. Journal of Groundwater Science and Engineering: 264−281. doi: 10.19637/j.cnki.2305-7068.2019.03.007

    Muthamilselvan A, Srimadhi K, Nandhini. R, et al. 2017. Spatial confirmation of major lineament and groundwater exploration using Ground Magnetic Method near Mecheri Village, Salem District of Tamil Nadu, India. Journal of Geology & Geophysics.

    Nakamura A, Milligan PR. 2015. Total Magnetic Intensity (TMI) grid of Australia with variable reduction to pole (VRTP). Geoscience Australia.

    Nilawar, Waikar ML, Aditya P. 2014. Identification of groundwater potential zone using Remote Sensing and GIS technique. International Journal of Innovative Research in Science, Engineering and Technology.

    Pothiraj P, Baskaran R. 2013. Mapping of lineaments for groundwater targeting and sustainable water resource management in Hard Rock hydrogeological environment using RS-GIS. Climate Change and Regional/Local Responses.

    Prasad RK, Mondal NC, Banerjee P, et al. 2008. Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3): 467−475. doi: 10.1007/s00254-007-0992-3

    Saaty, Thomas L. 2014. Analytic Heirarchy Process. Wiley StatsRef: Statistics Reference Online.

    Saraf AK, Choudhury PR. 1998. Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10): 1825−1841. doi: 10.1080/014311698215018

    Simlandy, Sagar. 2015. Importance of groundwater as compatible with environment. International Journal of Ecosystem, 5: 89−92. doi: 10.5923/c.ije.201501.13

    Singh P, Thakur JK, Kumar S. 2013. Delineating groundwater potential zones in a hard-rock terrain using geospatial tool. Hydrological Sciences Journal, 58(1): 213−223. doi: 10.1080/02626667.2012.745644

    Subash C, Esben A, Pradip KM, et al. 2019. Large scale mapping of fractures and groundwater pathways in crystalline hardrock by AEM. Scientific Reports: 398. doi: 10.1038/s41598-018-36153-1

    Sultan A. 2013. Delineation of groundwater aquifer and subsurface structures on North Cairo, Egypt, using integrated interpretation of magnetic, gravity, geoelectrical and geochemical data. Geophysical Journal International, 192(1): 94−112. doi: 10.1093/gji/ggs008

    Tanveer D, Nachiketa R, Aadil B. 2020. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology and Landscapes.

    Zmuda AJ, Zmuda. 1971. The International Geomagnetic Reference Field: Introduction. Bull Int Assoc Geomag Aeronomy, 28: 148–152.

  • 加载中

(9)

(5)

计量
  • 文章访问数:  1208
  • PDF下载数:  19
  • 施引文献:  0
出版历程
收稿日期:  2022-01-12
录用日期:  2022-09-23
刊出日期:  2022-12-31

目录