Non-mineralized microbial pseudofossils in Gaojiashan biota: A new understanding of the preservation of organisms soft bodies in the latest Ediacaran
-
摘要: 陕西南部宁强地区的李家沟剖面灯影组高家山生物群产有大量磷酸盐化实体化石,包括各类管状化石、瓶状化石、疑难化石以及钙化蓝细菌等,类型丰富。近年来,随着研究的深入,微生物假形化石在该生物群中也被不断发现。由于微生物假形化石是生物死亡后腐解埋藏过程中生物体被微生物(球状和丝状蓝细菌)直接取代,因而原始生物体的结构形态得以完好保存。微生物可以通过改变环境中的物理化学条件使磷酸盐富集和快速堆积,对生物的非矿物组织包括软躯体的保存起到了很重要的作用。根据替代程度不同可以划分为完全替代类型和未完全替代类型。这一发现提供了高家山生物群中生物非矿化组织的另一种保存方式。微生物通过铸型完整复制了生物软躯体以及可能的胚胎形态特征,提供了对此时期软躯体保存的新认识。Abstract: The Ediacaran Gaojiashan biota from the Dengying Formation in Lijiagou section in the southern Shaanxi Province contains a large number of phosphatized fossils, including abundant tubular fossils, vase-shaped fossils and calcified cyanobacteria. With the deepening of research, microbial pseudofossils are recovered in the biota. The structure and even the whole body were duplicated by aggregated spherical or filamentous cyanobacteria through direct replacement of microorganisms. Microorganisms can enrich and accumulate phosphate rapidly by changing the physical and chemical conditions in the environment, which plays an important role in the preservation of non-mineral tissues including soft bodies of organisms. According to the degree of substitution, they can be divided into complete substituting and incomplete substituting types. Soft bodies or possible embryonic morphological characteristics were completely duplicated by microorganisms through casting moulds. This discovery provides another way for the preservation of non-mineralized biological tissues in Gaojiashan biota and a new understanding of the preservation of organisms soft bodies in this period.
-
-
Abed A M and Fakhouri K, 1990. Role of microbial processes in the genesis of Jordanian Upper Cretaceous phosphorites[J]. Geological Society London Special Publications, 52(1):193-203.
Alliso P A, 1988. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils[J]. Paleobiology, 14:139-154.
Allison P A, 1988. Konservat Lagerstätten:cause and classification[J]. Paleobiology,14(4):331-344.
Briggs D E G and KearAJ, 1994. Decay and mineralization of Shrimps[J]. Palaios,9:431-456.
Cai Y, Cortijo I, Schiffbauer J, et al., 2017.Taxonomy of the late Ediacaran index fossil Cloudina and a new similar taxon from South China[J]. Precambrian Research, 298,146-156.
Eagan J L, Andrews M E, Pearson R L, et al., 2017. Identification and modes of action of endogenous bacteria in taphonomy of embryos and larvae[J]. Palaios,32(4):206-217.
Hua Hong, Zhang L Y, Chen Z, et al.,2003. Microbially mediated phosphatization in the late Sinian skeletal fossils, southern Shaanxi[J]. Acta Palaeontology Sinica, 42(2):189-199.
Lamboy M, 1990. Microbial mediation in phosphatogenesis:new data from the Cretaceous phosphatic chalks of northern France[J]. Engineering Geology, 110(1):51-65.
Martill D M and Wilby P R, 1994. Lithified prokaryotes associated with fossil soft tissues from the Santana Formation (Cretaceous) of Brazil[J]. Kaupia, darmstadter beitrager zur naturgeschichte,4:71-77.
Min X, Hua H, Liu L, et al., 2019. Phosphatized Epiphyton from the terminal Neoproterozoic and its significance, Precambrian Research, doi:https://doi.org/10.1016/j.precamres.2019.105358.
O"Brien G W, Harris J R, Milnes A R, et al., 1981. Bacterial origin of East Australian continental margin phosphorites[J]. Nature, 294(5840):442-444.
Raff E C, Andrews M E, Turner F R, et al., 2013. Contingent interactions among biofilm-forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos[J]. Evolution & Development, 15(4):243-256.
Raff E C, Schollaert K L, Nelson D E, et al., 2008. Embryo fossilization is a biological process mediated by microbial biofilms[J]. Proceedings of the National Academy of Sciences, 105(49):19360-19365.
Raff R A, Andrews M E, Pearson R L, et al., 2014. MICROBIAL ECOLOGY AND BIOFILMS IN THE TAPHONOMY OF SOFT TISSUES[J]. Palaios, 29(11):560-569.
Seilacher A, 1970. Begriff und Bedeutung der Fossil-Lagerstätten[J]. Neues Jahrbuch für Geologie und Pal? ontologie-Abhandlungen, 1970(1):34-39.
Soudry D, 1992. Primary bedded phosphorites in the Campanian Mishash Formation, Negev, southern Israel[J]. Sedimentary Geology, 80(1-2):77-88.
Soudry D, 2000. Carbonate-phosphate competition in the Negev phosphorites (southern Israel):a microstructural study]//Glenn C R, Prévôt-Lucas L, Lucas J. Marine authigenesis:from Global to microbial[M]. SEPM special Publ. 66:415 -426.
Soudry D and Champetier Y, 2010. Microbial processes in the Negev phosphorites (southern Israel)[J]. Sedimentology, 30(3):411-423.
Soudry D and Lewy Z, 1988. Microbially influenced formation of phosphate nodules and megafossil moulds (Negev, Southern Israel)[J]. Palaeogeography Palaeoclimatology Palaeoecology, 64(1-2):15-34.
Wilby P R, Briggs D E G, Bernier P, et al., 1996. Role of microbial mats in the fossilization of soft tissues[J]. Geology, 24(9):787-790.
Wilby P R and Briggs D E G, 1997. Taxonomic trends in the resolution of detail preserved in fossil phosphatized soft tissues[J]. Geobios, 30(S1):493-502.
Wilby P R and Whyte M A, 1995. Phosphatized soft tissues in bivalves from the Portland Roach of Dorset (Upper Jurassic)[J]. Geological Magazine, 132(1):117-120.
Xiao S and Knoll A H, 2010. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstatte, South China.[J]. Lethaia, 32(3):219-238.
华洪,陈哲,袁训来,等,2010. 陕南伊迪卡拉纪末期的瓶状化石——可能最早的有孔虫化石[J]. 中国科学(D辑),40 (9):1105-1114.
华洪,张录易,张子福,等,2001.高家山生物群化石组合面貌及其特征[J].地层学杂志,25(1):13-17.
陕西省地质矿产局, 1989.陕西省区域地质志[M].北京:地质出版社.
孙勃, 2012.陕西宁强地区埃迪卡拉系顶部具矿化骨骼化石研究[D].西安:西北大学.
杨晓光,2018. 寒武纪早期宽川铺生物群中微生物化石与相关显微结构[D].西安:西北大学.
张录易,董军社,田淑华,等,1992.高家山生物群[C]//丁莲芳,等.扬子地台北缘晚震旦世-早寒武世早期生物群研究[M].北京:科学技术文献出版社.33-63,
张兴亮和舒德干,1996.澄江化石库中双节虫类的保存状态及其埋葬后的腐烂过程[J].西北大学学报,26(z):454-458.
张兴亮和舒德干,2001.试论动物非矿化组织的保存[J].沉积学报,19(1):13-19.
-
计量
- 文章访问数: 1341
- PDF下载数: 111
- 施引文献: 0