阿尔巴尼亚布尔齐泽壳-幔过渡带豆荚状铬铁矿成因及其对富Ti熔体交代作用的记录

邱添, 杨经绥, 吴魏伟, 熊发挥, 芮会超, 蒋久阳. 2021. 阿尔巴尼亚布尔齐泽壳-幔过渡带豆荚状铬铁矿成因及其对富Ti熔体交代作用的记录. 沉积与特提斯地质, 41(3): 485-504. doi: 10.19826/j.cnki.1009-3850.2021.09010
引用本文: 邱添, 杨经绥, 吴魏伟, 熊发挥, 芮会超, 蒋久阳. 2021. 阿尔巴尼亚布尔齐泽壳-幔过渡带豆荚状铬铁矿成因及其对富Ti熔体交代作用的记录. 沉积与特提斯地质, 41(3): 485-504. doi: 10.19826/j.cnki.1009-3850.2021.09010
QIU Tian, YANG Jingsui, WU Weiwei, XIONG Fahui, RUI Huichao, JIANG Jiuyang. 2021. Petrogenesis of chromitites and its records of Ti metasomatism in crust-mantle transition zone, Bulqiza ophiolite massif, Albania. Sedimentary Geology and Tethyan Geology, 41(3): 485-504. doi: 10.19826/j.cnki.1009-3850.2021.09010
Citation: QIU Tian, YANG Jingsui, WU Weiwei, XIONG Fahui, RUI Huichao, JIANG Jiuyang. 2021. Petrogenesis of chromitites and its records of Ti metasomatism in crust-mantle transition zone, Bulqiza ophiolite massif, Albania. Sedimentary Geology and Tethyan Geology, 41(3): 485-504. doi: 10.19826/j.cnki.1009-3850.2021.09010

阿尔巴尼亚布尔齐泽壳-幔过渡带豆荚状铬铁矿成因及其对富Ti熔体交代作用的记录

  • 基金项目:

    国家自然科学基金项目(92062215,41720104009,41703053,41802055,41782072,42172069);中国地质科学院地质研究所基本科研业务费项目(J1903);南方海洋科学与工程广东省实验室(广州)人才团队引进重大专项(GML2019ZD0201)和中国地质调查局地质调查项目(DD20190060;DD20221817)联合资助

详细信息
    作者简介: 邱添(1987-),女,助理研究员,从事矿床地球化学研究。E-mail:tianqiu@pku.edu.cn
  • 中图分类号: P618.33

Petrogenesis of chromitites and its records of Ti metasomatism in crust-mantle transition zone, Bulqiza ophiolite massif, Albania

  • 豆荚状铬铁矿是关键金属铬的重要来源之一,尽管豆荚状铬铁矿的研究取得了诸多进展,但对于发育于蛇绿岩壳-幔过渡带的铬铁矿成因却涉及较少。阿尔巴尼亚布尔齐泽岩体壳-幔过渡带中产出的Cerruja豆荚状铬铁矿矿床,其矿体及纯橄岩围岩普遍被辉石岩脉穿切,辉石岩脉与矿体接触带以及辉石岩脉中的铬尖晶石强烈破碎,在铬尖晶石的裂隙和包裹体中发育大量富Ti矿物相,如金红石、钛铁矿和榍石等,是研究壳-幔过渡带铬铁矿成因的理想对象。Cerruja豆荚状铬铁矿及纯橄岩围岩中铬尖晶石Cr#分别为0.56~0.58和0.52~0.55,属于高铝型铬铁矿。接触带及辉石岩脉中的铬尖晶石Cr#明显升高(分别为0.57~0.67和0.72~0.83),且Ti、V、Mn、Sc、Co、Zn和Ga含量也升高。本文依据铬尖晶石的结构及矿物化学成分变化特征,提出布尔齐泽壳-幔过渡带铬铁矿经历多阶段演化叠加:首先,Mirdita-Pindos洋盆在侏罗纪(约165 Ma)发生洋内初始俯冲,软流圈物质上涌生成的MORB-like弧前玄武质熔体随着俯冲的进行逐渐向玻安质熔体演变,期间产生的过渡型熔体与地幔橄榄岩反应生成高铝型铬铁矿;然后,部分MORB-like弧前玄武质熔体随着堆晶间隙分离结晶往富Fe和Ti的方向演化,改造早期形成的高铝型铬铁矿并结晶高铬型铬铁矿,同时生成金红石、钛铁矿和榍石等富Ti矿物相。
  • 加载中
  • Arai S and Miura M, 2016. Formation and modification of chromitites in the mantle[J]. Lithos, 264:277-295.

    Arai S and Yurimoto H, 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 89:1279-1288.

    Arculus R J and Wills K J A, 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc[J]. Journal of Petrology, 21:743-749.

    Barnes S J and Roeder P L, 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 42 (12):2279-2302.

    Basch V, Rampone E, Borghini G, et al., 2019. Origin of pyroxenites in the oceanic mantle and their implications on the reactive percolation of depleted melts[J]. Contribution to Mineralogy and Petrology, 174 (12):1-25.

    Beccaluva L, Coltorti M, Ferrini V, et al., 1998. Petrological modeling of Albanian Ophiolites with particularregard to the Bulqiza chromite ore deposits[J]. Periodico di Mineralogia, 67(1-3):7-23.

    Beqiraj A, Masi U, Violo M, 2000. Geochemical characterization of podiform chromite ores from the ultramafic massif of Bulqiza (Eastern Ophiolitic Belt, Albania) and hints for exploration[J]. Exploration and Mining Geology, 9(2):149-156.

    Bodinier J L and Godard M, 2003. Orogenic, ophiolitic, and abyssal peridotites[M]. In:Carlson R (Ed.), Treatise on Geochemistry, 2:Mantle and Core. Elsevier, Amsterdam, 103-170.

    Borisova A Y, Ceuleneer G, Kamenetsky V S, 2012. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions[J]. Journal of Petrology, 53(12):2411-2440.

    Bortolotti V, Kodra A, Marroni M, et al., 1996. Geology and petrology of ophiolitic sequences in Mirdita region (Northern Albania)[J]. Ofioliti, 21(1):3-20.

    Burns L E, 1985. The border ranges ultramafic and mafic complex, south-central Alaska:cumulate fractionates of island-arc volcanics[J]. Canadian Journal of Earth Sciences, 22:1020-1038.

    Cina A, 2010. Mineralogy of chromitites, Bulqiza ultramafic massif, Albania ophiolitic complex[C]. International congress of the geological society of Greece Patras:240-252.

    Clague D A, Frey F A, Thompson G, et al., 1981. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos Spreading Center Role of crystal fractionation and mantle heterogeneity[J]. Journal of Geophysical Research, 86:9469-9482.

    Dilek Y, Furnes H, Shallo M, 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana[J]. Gondwana Research, 11(4):453-475.

    Dilek Y, Furnes H, Shallo, 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 100(1-4):174-209.

    Dilek Y, Shallo M, Furnes H, 2005. Rift-drift, seafloor spreading, and subduction tectonics of Albanian ophiolites[J]. International Geology Review, 47(2):147-176.

    Farré-de-Pablo J, Proenza J A, González-Jiménez J M, et al., 2000. Ophiolite hosted chromitite formed by supra-subduction zone peridotite-plume interaction[J]. Geoscience Frontiers, 11(6):2083-2102.

    Gale A, Dalton C A, Langmuir C H, 2013. The mean composition of ocean ridge basalts[J]. G-cubed, 14:489-518.

    Griffin W L, Afonso J C, Belousova E A, et al., 2016. Mantle recycling:transition zone Metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57:655-684.

    Han Y S, Waterton P, Szilas K, et al., 2021. Origin of high-Cr stratiform chromitite in the Fangmayu Alaskan-type ultramafic intrusion, north China Craton[J]. Precambrian Research, 355(12):106096.

    Hicky R L and Frey F A, 1982. Geochemical characteristics of boninite series volcanic:implication for their source[J]. Geochimica et Cosmochimica Acta, 46(11):2099-2115.

    Hoeck V, Koller F, Meisel T, et al., 2002. The Jurassic South Albanian Ophiolites:MOR-vs. SSZ-type ophiolites[J]. Lithos, 65:143-164.

    Hoxha M and Boullier A M, 1995. The peridotites of the Kukës ophiolite (Albania):structure and kinematics[J]. Tectonophysics, 249:217-231.

    Juster T C, Grove T L, Perfit M R, 1989. Experimental constraints on the generation of Fe-Ti basalts, andesites and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W[J]. Journal of Geophysical Research, 94:9215-9247.

    Kamenetsky V S, Crawford A J, Meffre S, 2001. Factors controlling chemistry of magmatic spinel:an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology, 42(4):655-671.

    Kelemen P B, Dick H J, Quick J E, 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 358:635-641.

    Kelemen P B, Shimizu N, Salters V J, 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels[J]. Nature 375:747-753.

    Kocks H, Melcher F, Meisel T, et al., 2007. Diverse contributing source to chromitites petrogenesis in the Shebenik ophiolitic complex, Albania:evidence from new PGE- and Os-isotope data[J]. Mineralogy and Petrology, 91:139-170.

    Latypov R, Chistyakova S, Mukherjee R, 2017. A novel hypothesis for origin of massive chromitites in the Bushveld igneous complex[J]. Journal of Petrology, 58:1899-1940.

    Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2):34-43.

    Lorand J P and Gregoire M, 2010. Petrogenesis of Fe-Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern Pyrénées, France)[J].Contribution to Mineralogy and Petrology, 160 (1):99-113.

    Marchesi C, Garrido C J, Godard M, et al., 2006. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)[J]. Contribution to Mineralogy and Petrology, 151 (6):717-736.

    Meijer A and Reagan M, 1981. Petrology and geochemistry of the island of Sarigan in the Mariana arc:calc-alkaline volcanism in an oceanic setting[J]. Contribution to Mineralogy and Petrology, 77:337-354.

    Meshi A, Boudier F, Nicolas A, et al., 2010. Structure and tectonics of lower crustal upper mantle rocks in the Jurassic Mirdita ophiolites, Albania[J]. International Geology Review, 52(2-3):117-141.

    Meshi A, Hoxha I, Milushi I., 2005.Chromitites in the Mirdita ophiolite (Albania):structure and genetic implications[J]. Journal of Alpine Geology, 47:1-29.

    Morishita T, Dilek Y, Shallo M, 2011. Insight into the uppermost mantle section of a maturing arc:the eastern Mirdita ophiolite, Albania[J]. Lithos, 124:215-226.

    Morishita T, Maeda J, Miyashita S, et al., 2004. Magmatic srilankite (Ti2ZrO6) in gabbroic vein cutting oceanic peridotites:an unusual product of peridotite-melt interactions beneath slow-spreading ridges[J]. American Mineralogist, 89 (5-6):759-766.

    Mukherjee R, Latypov R, Balakrishnan A, 2017. An intrusive origin of some UG-1 chromitite layers in the Bushveld Igneous Complex, South Africa:insights from feld relationships[J]. Ore Geology Reviews, 90:94-109

    Nicolas A and Boudier F. 1999. Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania)[J]. Journal of Geophysical research. 104(B7):15155-15167.

    Nicolas A and Prinzhofer A, 1983. Cumulative or residual origin for the transition zone in ophiolites, structural evidence[J]. Journal of Petrology, 24:188-206.

    Pagé P and Barnes S J, 2009.Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Québec, Canada[J]. Economic Geology, 104(104):997-1018.

    Pearce J A and Reagan M K, 2019. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Tisystematics[J]. Geosphere, 15(4):1008-1037.

    Phillips-Lander C M and Dilek Y, 2009. Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania[J]. Lithos, 108(1-4):192-206.

    Prinz M, Keil K, Green J A, et al., 1976. Ultramafic and mafic dredge samples from the equatorial mid-Atlantic ridge and fracture zones[J]. Journal of Geophysical Research, 81:4087-4103.

    Proenza J A, Gervilla F, Melgarejo J C, et al., 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba):consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle[J]. Economic Geology, 94:547-566.

    Proenza J, Gervilla F, Melgarejo J, et al., 2001. Genesis of sulfide-rich chromite ores by the interaction between chromitite and pegmatitic olivine-norite dikes in the Potosi Mine (Moa-Baracoa ophiolitic massif, eastern Cuba)[J]. Mineralium Deposita, 36 (7):658-669.

    Pujol-Solà N, Proenza J A, García-Casco A, et al., 2020. Fe-Ti-Zr metasomatism in the oceanic mantle due to extreme differentiation of tholeiitic melts (Moa-Baracoa ophiolite, Cuba)[J]. Lithos, 358-359:105420.

    Python M and Ceuleneer G, 2003. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite[J].Geochemistry, Geophysics, Geosystems, 4 (7):1-35.

    Qiu T, Yang J, Milushi I, et al., 2018. Petrology and PGE Abundances of High-Cr and High-Al Podiform Chromitites and Peridotites from the Bulqiza Ultramafic Massif, Eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica, 3:1063-1081.

    Reagan M K, Ishizuka O, Stern R J, et al., 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 11(3):1-17.

    Robinson P T, Trumbull R B, Schmitt A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27:486-506.

    Rollinson H, 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite:inferred parental melt compositions[J]. Contributions to Mineralogy and Petrology, 156(3):273-288.

    Rollinson H and Adetunji J, 2015. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite:a review[J]. Gondwana Research, 27(2):543-554.

    Saccani E and Tassinari R, 2015. The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry[J]. Ofioliti, 40:37-56.

    Shallo M and Dilek Y, 2003. Development of the ideas on the origin of Albanian ophiolites[M]. In:Dilek Y, Newcomb S (eds.), Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 351-364.

    Shallo M, Kote D, Vranaj A, 1987, Geochemistry of the volcanics from ophiolitic belts of Albanides.Ofioliti, 12:125-136.

    Spandler C, Mavrogenes J, Arculus R, 2005. Origin of chromitites in layered intrusions:evidence from chromite-hosted melt inclusions from the Stillwater Complex[J]. Geology, 33:893-896.

    Sun S S and McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. In:Saunders A D, Norry M J. (Eds.), Magmatism in the Ocean Basins. Geol.Soc. Spec. Publ., 42:313-345.

    Thayer T P, 1970. Chromite segregations as petrogenetic indicators[C]. Geological Society of South Africa Special Publication 1:132-146.

    Trumbull R B, Yang J S, Robinson P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3):612-620.

    Uysal I, Akmaz R M, Kapsiotis A, et al., 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancik ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data[J]. Ore Geology Reviews, 65:26-41.

    Vanko D A and Batizo R, 1982. Gabbroic rocks from the Mathematician Ridge failed rift[J]. Nature, 300:742-744.

    Wilson M, 1989. Igneous petrogenesis:a global tectonic approach[M]. Unwin Hyman, London, 1-466.

    Xiong F H, Yang J S, Robinson P T, et al., 2015. Petrology and geochemistry of high Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania[J]. Ore Geology Reviews, 70(1):188-207.

    Xiong F H, Zoheir B, Wirth R, et al., 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites:implications for a mantle convection genesis of the Bulqiza ophiolite[J]. Lithos, 398-399:106305.

    Yamamoto S, Komiya T, Hirose K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4):314-322.

    Yang J S, Dobrzhinetskaya L, Bai W J, et al., 2007.Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878.

    Yumul G P, 2004. Zambales Ophiolite Complex (Philippines) transition-zone dunites, restite, cumulate, or replacive products[J]. International Geology Review, 46:259-272.

    Zhou M F, Robinson P T, Malpas J., et al., 1996. Podiform chromites in the Luobusa Ophiolite (Southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37:3-21

    Zhou M F, Robinson P T, Su B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1):262-283.

    Zhou M F, Robinson P, Bai W J, 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. Mineralium Deposita, 29:98-101.

    耿全如, 李文昌, 王立全, 等. 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质,41(2):297-315.

    杨经绥,白文吉,方青松,等. 2007. 极地乌拉尔蛇绿岩铬铁矿中发现金刚石和一个异常矿物群[J]. 中国地质,34(5):950-952.

    周美付, 白文吉. 1994. 对豆荚状铬铁矿矿床成因的认识[J]. 矿床地质, 13(3):242-249.

  • 加载中
计量
  • 文章访问数:  1322
  • PDF下载数:  75
  • 施引文献:  0
出版历程
收稿日期:  2021-08-23
修回日期:  2021-09-03

目录