Petrogenesis of chromitites and its records of Ti metasomatism in crust-mantle transition zone, Bulqiza ophiolite massif, Albania
-
摘要: 豆荚状铬铁矿是关键金属铬的重要来源之一,尽管豆荚状铬铁矿的研究取得了诸多进展,但对于发育于蛇绿岩壳-幔过渡带的铬铁矿成因却涉及较少。阿尔巴尼亚布尔齐泽岩体壳-幔过渡带中产出的Cerruja豆荚状铬铁矿矿床,其矿体及纯橄岩围岩普遍被辉石岩脉穿切,辉石岩脉与矿体接触带以及辉石岩脉中的铬尖晶石强烈破碎,在铬尖晶石的裂隙和包裹体中发育大量富Ti矿物相,如金红石、钛铁矿和榍石等,是研究壳-幔过渡带铬铁矿成因的理想对象。Cerruja豆荚状铬铁矿及纯橄岩围岩中铬尖晶石Cr#分别为0.56~0.58和0.52~0.55,属于高铝型铬铁矿。接触带及辉石岩脉中的铬尖晶石Cr#明显升高(分别为0.57~0.67和0.72~0.83),且Ti、V、Mn、Sc、Co、Zn和Ga含量也升高。本文依据铬尖晶石的结构及矿物化学成分变化特征,提出布尔齐泽壳-幔过渡带铬铁矿经历多阶段演化叠加:首先,Mirdita-Pindos洋盆在侏罗纪(约165 Ma)发生洋内初始俯冲,软流圈物质上涌生成的MORB-like弧前玄武质熔体随着俯冲的进行逐渐向玻安质熔体演变,期间产生的过渡型熔体与地幔橄榄岩反应生成高铝型铬铁矿;然后,部分MORB-like弧前玄武质熔体随着堆晶间隙分离结晶往富Fe和Ti的方向演化,改造早期形成的高铝型铬铁矿并结晶高铬型铬铁矿,同时生成金红石、钛铁矿和榍石等富Ti矿物相。Abstract: Podiform chromitites are one of the important sources of the key metal chromium. A lot of progress has been made on the research of podiform chromitites, but little referred to the genesis of the chromitites located in crust-mantle transition zone of ophiolite. The Cerruja podiform chromitites and dunite wall-rocks were intruded by pyroxenite dikes in the crust-mantle transition zone of the Bulqiza ophiolite massif, Albania. Highly brecciated spinel and Ti-bearing minerals such as rutile, ilmenite and titanite were found in pyroxenite dikes and in the interaction zone between pyroxenite dikes and chromitites. Such characteristics make them an ideal subject for the study of the chromitites in the crust-mantle transition zone. Cerruja podiform chromitites are high-Al variety with Cr# of chromitites ore varying from 0.56 to 0.58 and of dunite wall-rocks varying from 0.52 to 0.55. Spinels in the interaction zone between pyroxenite dikes and chromitites and in the pyroxenite dikes are characterized by the obviously higher Cr# value (0.57 to 0.67 and 0.72 to 0.83, respectively) than chromitites ores. Contents of Ti、V、Mn、Sc、Co、Zn and Ga of spinels in the interaction zone are higher with the closer distance to the pyroxenite dikes. According to the texture characteristics of spinel and the variations of mineral chemical composition, we propose that the chromitites in the crust-mantle transition zone of Bulqiza massif is the result of a multi-stage process:First, high-Al chromitites were produced by the reaction between peridotites and the transition melts which has the geochemical properties both of MORB-like and boninitic, formed during the evolution of initial subduction of the Mirdita-Pindos ocean basin (~165 Ma); and then, Ti-Fe-rich residual melts were produced by intercumulus crystal fractionation of the MORB-like melt in a crystal-melt mush, metasomatizing and transforming the surrounding high-Al chromite into high-Cr chromite, and also crystallizing Ti-rich minerals such as rutile, ilmenite and titanite.
-
-
Arai S and Miura M, 2016. Formation and modification of chromitites in the mantle[J]. Lithos, 264:277-295.
Arai S and Yurimoto H, 1994. Podiform chromitites of the Tari-Misaka ultramafic complex, southwestern Japan, as mantle-melt interaction products[J]. Economic Geology, 89:1279-1288.
Arculus R J and Wills K J A, 1980. The petrology of plutonic blocks and inclusions from the Lesser Antilles island arc[J]. Journal of Petrology, 21:743-749.
Barnes S J and Roeder P L, 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks[J]. Journal of Petrology, 42 (12):2279-2302.
Basch V, Rampone E, Borghini G, et al., 2019. Origin of pyroxenites in the oceanic mantle and their implications on the reactive percolation of depleted melts[J]. Contribution to Mineralogy and Petrology, 174 (12):1-25.
Beccaluva L, Coltorti M, Ferrini V, et al., 1998. Petrological modeling of Albanian Ophiolites with particularregard to the Bulqiza chromite ore deposits[J]. Periodico di Mineralogia, 67(1-3):7-23.
Beqiraj A, Masi U, Violo M, 2000. Geochemical characterization of podiform chromite ores from the ultramafic massif of Bulqiza (Eastern Ophiolitic Belt, Albania) and hints for exploration[J]. Exploration and Mining Geology, 9(2):149-156.
Bodinier J L and Godard M, 2003. Orogenic, ophiolitic, and abyssal peridotites[M]. In:Carlson R (Ed.), Treatise on Geochemistry, 2:Mantle and Core. Elsevier, Amsterdam, 103-170.
Borisova A Y, Ceuleneer G, Kamenetsky V S, 2012. A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions[J]. Journal of Petrology, 53(12):2411-2440.
Bortolotti V, Kodra A, Marroni M, et al., 1996. Geology and petrology of ophiolitic sequences in Mirdita region (Northern Albania)[J]. Ofioliti, 21(1):3-20.
Burns L E, 1985. The border ranges ultramafic and mafic complex, south-central Alaska:cumulate fractionates of island-arc volcanics[J]. Canadian Journal of Earth Sciences, 22:1020-1038.
Cina A, 2010. Mineralogy of chromitites, Bulqiza ultramafic massif, Albania ophiolitic complex[C]. International congress of the geological society of Greece Patras:240-252.
Clague D A, Frey F A, Thompson G, et al., 1981. Minor and trace element geochemistry of volcanic rocks dredged from the Galapagos Spreading Center Role of crystal fractionation and mantle heterogeneity[J]. Journal of Geophysical Research, 86:9469-9482.
Dilek Y, Furnes H, Shallo M, 2007. Suprasubduction zone ophiolite formation along the periphery of Mesozoic Gondwana[J]. Gondwana Research, 11(4):453-475.
Dilek Y, Furnes H, Shallo, 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust[J]. Lithos, 100(1-4):174-209.
Dilek Y, Shallo M, Furnes H, 2005. Rift-drift, seafloor spreading, and subduction tectonics of Albanian ophiolites[J]. International Geology Review, 47(2):147-176.
Farré-de-Pablo J, Proenza J A, González-Jiménez J M, et al., 2000. Ophiolite hosted chromitite formed by supra-subduction zone peridotite-plume interaction[J]. Geoscience Frontiers, 11(6):2083-2102.
Gale A, Dalton C A, Langmuir C H, 2013. The mean composition of ocean ridge basalts[J]. G-cubed, 14:489-518.
Griffin W L, Afonso J C, Belousova E A, et al., 2016. Mantle recycling:transition zone Metamorphism of Tibetan ophiolitic peridotites and its tectonic implications[J]. Journal of Petrology, 57:655-684.
Han Y S, Waterton P, Szilas K, et al., 2021. Origin of high-Cr stratiform chromitite in the Fangmayu Alaskan-type ultramafic intrusion, north China Craton[J]. Precambrian Research, 355(12):106096.
Hicky R L and Frey F A, 1982. Geochemical characteristics of boninite series volcanic:implication for their source[J]. Geochimica et Cosmochimica Acta, 46(11):2099-2115.
Hoeck V, Koller F, Meisel T, et al., 2002. The Jurassic South Albanian Ophiolites:MOR-vs. SSZ-type ophiolites[J]. Lithos, 65:143-164.
Hoxha M and Boullier A M, 1995. The peridotites of the Kukës ophiolite (Albania):structure and kinematics[J]. Tectonophysics, 249:217-231.
Juster T C, Grove T L, Perfit M R, 1989. Experimental constraints on the generation of Fe-Ti basalts, andesites and rhyodacites at the Galapagos Spreading Center, 85°W and 95°W[J]. Journal of Geophysical Research, 94:9215-9247.
Kamenetsky V S, Crawford A J, Meffre S, 2001. Factors controlling chemistry of magmatic spinel:an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks[J]. Journal of Petrology, 42(4):655-671.
Kelemen P B, Dick H J, Quick J E, 1992. Formation of harzburgite by pervasive melt/rock reaction in the upper mantle[J]. Nature, 358:635-641.
Kelemen P B, Shimizu N, Salters V J, 1995. Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels[J]. Nature 375:747-753.
Kocks H, Melcher F, Meisel T, et al., 2007. Diverse contributing source to chromitites petrogenesis in the Shebenik ophiolitic complex, Albania:evidence from new PGE- and Os-isotope data[J]. Mineralogy and Petrology, 91:139-170.
Latypov R, Chistyakova S, Mukherjee R, 2017. A novel hypothesis for origin of massive chromitites in the Bushveld igneous complex[J]. Journal of Petrology, 58:1899-1940.
Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2):34-43.
Lorand J P and Gregoire M, 2010. Petrogenesis of Fe-Ti oxides in amphibole-rich veins from the Lherz orogenic peridotite (Northeastern Pyrénées, France)[J].Contribution to Mineralogy and Petrology, 160 (1):99-113.
Marchesi C, Garrido C J, Godard M, et al., 2006. Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba)[J]. Contribution to Mineralogy and Petrology, 151 (6):717-736.
Meijer A and Reagan M, 1981. Petrology and geochemistry of the island of Sarigan in the Mariana arc:calc-alkaline volcanism in an oceanic setting[J]. Contribution to Mineralogy and Petrology, 77:337-354.
Meshi A, Boudier F, Nicolas A, et al., 2010. Structure and tectonics of lower crustal upper mantle rocks in the Jurassic Mirdita ophiolites, Albania[J]. International Geology Review, 52(2-3):117-141.
Meshi A, Hoxha I, Milushi I., 2005.Chromitites in the Mirdita ophiolite (Albania):structure and genetic implications[J]. Journal of Alpine Geology, 47:1-29.
Morishita T, Dilek Y, Shallo M, 2011. Insight into the uppermost mantle section of a maturing arc:the eastern Mirdita ophiolite, Albania[J]. Lithos, 124:215-226.
Morishita T, Maeda J, Miyashita S, et al., 2004. Magmatic srilankite (Ti2ZrO6) in gabbroic vein cutting oceanic peridotites:an unusual product of peridotite-melt interactions beneath slow-spreading ridges[J]. American Mineralogist, 89 (5-6):759-766.
Mukherjee R, Latypov R, Balakrishnan A, 2017. An intrusive origin of some UG-1 chromitite layers in the Bushveld Igneous Complex, South Africa:insights from feld relationships[J]. Ore Geology Reviews, 90:94-109
Nicolas A and Boudier F. 1999. Slow spreading accretion and mantle denudation in the Mirdita ophiolite (Albania)[J]. Journal of Geophysical research. 104(B7):15155-15167.
Nicolas A and Prinzhofer A, 1983. Cumulative or residual origin for the transition zone in ophiolites, structural evidence[J]. Journal of Petrology, 24:188-206.
Pagé P and Barnes S J, 2009.Using trace elements in chromites to constrain the origin of podiform chromitites in the Thetford mines ophiolite, Québec, Canada[J]. Economic Geology, 104(104):997-1018.
Pearce J A and Reagan M K, 2019. Identification, classification, and interpretation of boninites from Anthropocene to Eoarchean using Si-Mg-Tisystematics[J]. Geosphere, 15(4):1008-1037.
Phillips-Lander C M and Dilek Y, 2009. Structural architecture of the sheeted dike complex and extensional tectonics of the Jurassic Mirdita ophiolite, Albania[J]. Lithos, 108(1-4):192-206.
Prinz M, Keil K, Green J A, et al., 1976. Ultramafic and mafic dredge samples from the equatorial mid-Atlantic ridge and fracture zones[J]. Journal of Geophysical Research, 81:4087-4103.
Proenza J A, Gervilla F, Melgarejo J C, et al., 1999. Al- and Cr-rich chromitites from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba):consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle[J]. Economic Geology, 94:547-566.
Proenza J, Gervilla F, Melgarejo J, et al., 2001. Genesis of sulfide-rich chromite ores by the interaction between chromitite and pegmatitic olivine-norite dikes in the Potosi Mine (Moa-Baracoa ophiolitic massif, eastern Cuba)[J]. Mineralium Deposita, 36 (7):658-669.
Pujol-Solà N, Proenza J A, García-Casco A, et al., 2020. Fe-Ti-Zr metasomatism in the oceanic mantle due to extreme differentiation of tholeiitic melts (Moa-Baracoa ophiolite, Cuba)[J]. Lithos, 358-359:105420.
Python M and Ceuleneer G, 2003. Nature and distribution of dykes and related melt migration structures in the mantle section of the Oman ophiolite[J].Geochemistry, Geophysics, Geosystems, 4 (7):1-35.
Qiu T, Yang J, Milushi I, et al., 2018. Petrology and PGE Abundances of High-Cr and High-Al Podiform Chromitites and Peridotites from the Bulqiza Ultramafic Massif, Eastern Mirdita Ophiolite, Albania[J]. Acta Geologica Sinica, 3:1063-1081.
Reagan M K, Ishizuka O, Stern R J, et al., 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system[J]. Geochemistry, Geophysics, Geosystems, 11(3):1-17.
Robinson P T, Trumbull R B, Schmitt A, et al., 2015. The origin and significance of crustal minerals in ophiolitic chromitites and peridotites[J]. Gondwana Research, 27:486-506.
Rollinson H, 2008. The geochemistry of mantle chromitites from the northern part of the Oman ophiolite:inferred parental melt compositions[J]. Contributions to Mineralogy and Petrology, 156(3):273-288.
Rollinson H and Adetunji J, 2015. The geochemistry and oxidation state of podiform chromitites from the mantle section of the Oman ophiolite:a review[J]. Gondwana Research, 27(2):543-554.
Saccani E and Tassinari R, 2015. The role of MORB and SSZ magma-types in the formation of Jurassic ultramafic cumulates in the Mirdita ophiolites (Albania) as deduced from chromian spinel and olivine chemistry[J]. Ofioliti, 40:37-56.
Shallo M and Dilek Y, 2003. Development of the ideas on the origin of Albanian ophiolites[M]. In:Dilek Y, Newcomb S (eds.), Ophiolite Concept and the Evolution of Geological Thought. Geological Society of America Special Paper, 351-364.
Shallo M, Kote D, Vranaj A, 1987, Geochemistry of the volcanics from ophiolitic belts of Albanides.Ofioliti, 12:125-136.
Spandler C, Mavrogenes J, Arculus R, 2005. Origin of chromitites in layered intrusions:evidence from chromite-hosted melt inclusions from the Stillwater Complex[J]. Geology, 33:893-896.
Sun S S and McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[M]. In:Saunders A D, Norry M J. (Eds.), Magmatism in the Ocean Basins. Geol.Soc. Spec. Publ., 42:313-345.
Thayer T P, 1970. Chromite segregations as petrogenetic indicators[C]. Geological Society of South Africa Special Publication 1:132-146.
Trumbull R B, Yang J S, Robinson P T, et al., 2009. The carbon isotope composition of natural SiC (moissanite) from the Earth's mantle:New discoveries from ophiolites[J]. Lithos, 113(3):612-620.
Uysal I, Akmaz R M, Kapsiotis A, et al., 2015. Genesis and geodynamic significance of chromitites from the Orhaneli and Harmancik ophiolites (Bursa, NW Turkey) as evidenced by mineralogical and compositional data[J]. Ore Geology Reviews, 65:26-41.
Vanko D A and Batizo R, 1982. Gabbroic rocks from the Mathematician Ridge failed rift[J]. Nature, 300:742-744.
Wilson M, 1989. Igneous petrogenesis:a global tectonic approach[M]. Unwin Hyman, London, 1-466.
Xiong F H, Yang J S, Robinson P T, et al., 2015. Petrology and geochemistry of high Cr# podiform chromitites of Bulqiza, Eastern Mirdita Ophiolite (EMO), Albania[J]. Ore Geology Reviews, 70(1):188-207.
Xiong F H, Zoheir B, Wirth R, et al., 2021. Mineralogical and isotopic peculiarities of high-Cr chromitites:implications for a mantle convection genesis of the Bulqiza ophiolite[J]. Lithos, 398-399:106305.
Yamamoto S, Komiya T, Hirose K, et al., 2009. Coesite and clinopyroxene exsolution lamellae in chromites:In situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet[J]. Lithos, 109(3-4):314-322.
Yang J S, Dobrzhinetskaya L, Bai W J, et al., 2007.Diamond-and coesite-bearing chromitites from the Luobusa ophiolite, Tibet[J]. Geology, 35(10):875-878.
Yumul G P, 2004. Zambales Ophiolite Complex (Philippines) transition-zone dunites, restite, cumulate, or replacive products[J]. International Geology Review, 46:259-272.
Zhou M F, Robinson P T, Malpas J., et al., 1996. Podiform chromites in the Luobusa Ophiolite (Southern Tibet):implications for melt-rock interaction and chromite segregation in the upper mantle[J]. Journal of Petrology, 37:3-21
Zhou M F, Robinson P T, Su B X, et al., 2014. Compositions of chromite, associated minerals, and parental magmas of podiform chromite deposits:The role of slab contamination of asthenospheric melts in suprasubduction zone environments[J]. Gondwana Research, 26(1):262-283.
Zhou M F, Robinson P, Bai W J, 1994. Formation of podiform chromitites by melt/rock interaction in the upper mantle[J]. Mineralium Deposita, 29:98-101.
耿全如, 李文昌, 王立全, 等. 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质,41(2):297-315.
杨经绥,白文吉,方青松,等. 2007. 极地乌拉尔蛇绿岩铬铁矿中发现金刚石和一个异常矿物群[J]. 中国地质,34(5):950-952.
周美付, 白文吉. 1994. 对豆荚状铬铁矿矿床成因的认识[J]. 矿床地质, 13(3):242-249.
-
计量
- 文章访问数: 1322
- PDF下载数: 75
- 施引文献: 0