Comprehensive electrical prospecting of hydrothermal vein type deposits in carbonaceous rocks in the Tethyan Himalayan Pb-Zn-Sb-Au metallogenic belt: A case study of the Zhaxikang Pb-Zn-Sb polymetallic deposit in southern Tibet
-
摘要: 扎西康铅锌锑多金属矿床产出于特提斯喜马拉雅炭质板岩的断裂带内,是特提斯喜马拉雅铅锌锑金成矿带内典型的热液脉型矿床。由于含炭质岩石和金属硫化物都呈现出相似的低阻高极化电性特征,加之热液脉型矿床的矿体普遍较小,使得在含炭质岩石中对金属硫化物矿体进行电法勘探存在较大困难。本文通过对扎西康矿床已知矿体的音频大地电磁测深和激电中梯测量,发现矿区的炭质板岩呈现低电阻率(10-0.4~100Ω·m)和高极化率(9%~20%)特征,而矿体呈现出高电阻率(102~103Ω·m)和低极化率(1%~5%)的特征。经研究分析,认为造成这种现象的原因有两方面:(1)扎西康炭质板岩中的炭质物质量分数平均为0.79%,变质温度约在300±25℃~340±25℃,炭质物电阻率为6.1×10-5~6.8×10-4Ω·m,显示极好的导电性;此外,炭质板岩中存在大量黏土矿物,黏土矿物的吸水性促进了炭质物的连通性,因此炭质物高导电性与连通性的耦合使得炭质板岩呈现低阻高极化电性特征;(2)扎西康矿床的脉型矿体除包含金属硫化物外,还产出大量的脉石矿物,脉石矿物普遍具有高阻低极化电性特征,是造成整个矿体在炭质板岩中呈现高阻低极化异常的根本原因。据此,本文提出在炭质板岩中通过识别脉石矿物引起的高阻低极化异常带间接找矿的新思路,相应的技术方法组合为:利用激电中梯测量定位高阻低极化带的平面位置,再利用音频大地电磁测深探测其深部产状。
-
关键词:
- 含炭质岩石 /
- 热液脉型矿床 /
- 电法勘探 /
- 特提斯喜马拉雅 /
- 扎西康铅锌锑多金属矿
Abstract: Zhaxikang Pb-Zn-Sb polymetallic deposit, a typical hydrothermal vein type deposit in the Tethyan Himalayan Pb-Zn-Sb-Au metallogenic belt, occurs in the fault zone of carbonaceous slate. Because carbonaceous rocks and metal-bearing sulfides are usually with similar resistivity and polarization, and the ore bodies of hydrothermal vein type deposits are generally small, it is difficult to conduct electrical prospecting for sulfide ore bodies in carbonaceous rocks. The AMT and IP ladder measurements of known ore bodies in the Zhaxikang deposit show that carbonaceous slate in the area has low resistivity (10-0.4~0Ω·m) and high polarizability (9%~20%), while the ore bodies are characterized by high resistivity (102~3Ω·m) and low polarizability (1%~5%). Based on following facts,an indirect geophysical prospecting method is proposed in this paper: (1) The average content of organic carbon in carbonaceous slate is 0.79% in Zhaxikang mining area; (2) the metamorphic temperature is about 300 ±25 ℃ to 340 ±25 ℃; (3) the resistivity of organic carbon is (6.1×10-5~6.8×10-4Ω·m) and shows excellent conductivity; (4) a lot of clay minerals are contained in the carbonaceous slate, and the water absorption of clay minerals promotes the connectivity of organic carbon. The coupling of high conductivity and connectivity of organic carbon makes carbonaceous slate present low resistivity and high polarization; (5) vein-type ore bodies in the Zhaxikang deposit contain not only metal sulfides, but also a large number of gangue minerals, and gangue minerals are generally with high resistivity and low polarization, it is suggested that locating ore bodies in carbonaceous slate by identifying high resistivity and low polarization anomalies caused by gangue minerals is effective and useful. In addition, a suitable combination of prospecting methods is proposed, in which the planar position of the high resistance and low polarization zone can be located by IP measurement, and its deep occurrence can be detected by AMT measurement. -
-
Beyssac O, Goffe B, Chopin N C, et al., 2002. Raman spectra of carbonaceous material in metasediments; a new geothermometer[J]. Journal of Metamorphic Geology, 20, 858-871.
Beyssac O, Goffe B, Petitet J P, et al., 2003. On the characterization of disordered and heterogeneous carbonaceous matter by Raman spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59:2267-2276.
Burg J P, Guiraud M, Chen G M, et al., 1984. Himalayan metamorphism and deformations in the North Himalayan Belt (southern Tibet,China)[J]. Earth Planet Science Letters, 69: 391-400.
Buseck P R, Huang B J, 1985. Conversion of carbonaceous material to graphite during metamorphism[J]. Geochimica et Cosmochimica acta, 49: 2003-2016.
Constable S C., Parker R L, Constable C G, 1987. Occama inversion: A practical algorithm for generating smooth models from electromagnetic sounding data [J]. Geophysics, 52(3): 289-300.
Disnar J R, Sureau J F, 1990. Organic matter in ore genesis: Progress and perspectives [J].Organic Geochemistry, 16(1-3): 577-599.
Durand B, Monin J C, 1980. Elemental analysis of kerogen (C, H, O, N, S, Fe). In: Durand, B. (ed.) Kerogen. Technip, Paris: 114-161.
Gorzhevskiy D I, 1987. On the role of organic matter in ore formation [J]. International Geology Review, 29(2): 207-217.
Hodges K V, 2000. Tectonics of the Himalaya and southern Tibet from two perspectives[J]. Geological Society of America Bulletin, 112: 324-350.
Hodges K V, Parrish R R, Hoish T B, et al., 1992. Simultaneous Miocene extension and shortening in the Himalaya orogen[J]. Science, 258: 1466-1469.
Léger A, Mathez E A, Duba A, et al.,1996. Carbonaceous material in metamorphosed carbonate rocks from the Waits River Formation, NE Vermont, and its effect on electrical conductivity [J]. Journal of Geophysical Research, Part B: Solid Earth, 101(B10):22203-22214.
Oberlin A, Boulmier J L, Villey M, 1980. Electron microprobe study of kerogen microtexture. Selected criteria for determining the evolution path and evolution stage of kerogen. In: Durand, B. (ed.) Kerogen. Technip, Paris: 191-240.
Pouba Z, K[AKrˇD]íbek B, 1986. Organic matter and the concentration of metals in Precambrian stratiform deposits of theBohemian Massif [J]. Precambrian research, 33(1-3): 225-237.
Rodi W L, Mackie R L, 2001. Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion [J]. Geophysics, 66(1):174-187.
Sandford S A, Allamandola L J, 1990. The physical and infrared spectral properties of CO2 in astrophysical ice analogs[J]. The Astrophysical Journal, 355: 357-372.
Schulgasser K, 1976. Relationship between single-crystal and polycrystal electrical conductivity [J]. Journal of Applied Physics, 47 (5), 1880-1886.
Schulgasser K, 1977. Bounds on the conductivity of statistically isotropic polycrystals [J]. Journal of Physical Chemistry, 10 (3), 407-417.
Searle M P, Parrish R R, Hodges K V, 1997. Shisha Pangma leucogranite, South Tibetan Himalaya: Field relations, geochemistry, age, origin,and emplacement[J]. Journal of Geology, 105: 295-317.
Smith J T, Booker J R, 1991. Rapid inversion of two and three dimensional magnetotelluric data [J].Journal of Geophysical Research, 96(B3): 3905-3922
Sun X, Zheng Y, Pirajno F, et al., 2018. Geology, S-Pb isotopes, and 40Ar/39Ar geochronology of the Zhaxikang Sb-Pb-Zn-Ag deposit in Southern Tibet: implications for multiple mineralization events at Zhaxikang[J]. Miner Deposita, 53(3):435-458.
Wang Y, Alsmeyer D C, McCreery R L, 1990. Raman spectroscopy of carbon marterials: structural basis of observed spectra[J]. Chemistry of Materials, 2: 557-563.
Wilhelm H, Lelaurain M, McRae E, et al., 1998. Raman spectroscopic studies on well-defined carbonaceous matter of strong two-dimensional character[J]. Journal of applied physics, 84: 6552-6558.
Yin A, Harrison T M, 2000. Geologic evolution of the Himalayan-Tibetan orogeny[J]. Annual Review of Earth and Planetary Sciences, 28(1):211-280.
Yui Kouketsu, Tomoyuki Mizukami, Hiroshi Mori, et al., 2014. A new approach to develop the Raman carbonaceous material geothermometer for low-grade metamorphism using peak width[J]. Island Arc, 23:33-50.
Zhou Q, Li W C, Qing C S, et al., 2017. Origin and tectonic implications of the Zhaxikang Pb-Zn-Sb-Agdeposit in northern Himalaya: evidence from structures,Re-Os-Pb-S isotopes, and fluid inclusions [J]. Miner Deposita, 53(4):1-16.
Ο.Α.Εвстигнеев等著, 仇勇海译, 1991. 关于碳质岩石和细脉侵染状硫化物型金矿床的激发极化现象[C]. 国外地质勘探技术, 4: 35-36.
Л.И.Абаулина,曾宪荣. 1988. 金矿床中碳质的热液改造[J].地质地球化学,(5):14-15.
曾森甫,许建仁,1993.差异激电法探查地下水及区分矿种的初步研究[J].物探与化探,17(5):362-367.
曾森甫,许建仁,1994.电子导体的极化暂态特性与差异激电法[J].物探与化探,18(5):371-377.
顾涛,王迪民,杨梅,等, 2015. 高频红外碳硫仪测定土壤/沉积物中总碳质物研究[J].华南地质与矿产, 31:306-310.
郭镜,焦彦杰,梁生贤, 2019. 扎西康多金属矿含碳质岩石中赋矿断裂带的电性变化及找矿意义[J].成都理工大学学报(自然科学版),46(4):471-481.
郭镜,李文昌,李光明,等, 2019.多尺度综合地球物理方法在扎西康铅锌锑金多金属矿找矿预测中的应用[J].地球科学,44(6):2129-2142.
侯增谦,曲晓明,杨竹森,等, 2006.青藏高原碰撞造山带:Ⅲ.后碰撞伸展成矿作用[J].矿床地质,25(6):629-651.
黄伯钧,1987.变质岩中碳质物结构的直接观察[J].矿物岩石地球化学通报,1∶5-7.
焦彦杰,梁生贤,郭镜,等,2015.西藏扎西康铅锌矿集区的物探方法组合试验.物探与化探[J],39(2):245-252.
焦彦杰,梁生贤,郭镜,等,2017.西藏桑日则黑色岩系构造热液型铅锌矿定位预测研究[J].地球物理学进展,32(2):634-639.
李建昌,王永,王丹,等,2011.半导体电学特性四探针测试技术的研究现状[J].真空,48(3):1-7.
李应栩,李光明,董随亮,等,2015.西藏扎西康多金属矿床成矿过程中的流体性质演化初探[J].矿物岩石地球化学通报,34(3):571-582.
郦新,王笑笑,2013.高频红外碳硫仪测定土壤中的有机质[J].绿色科技,5:303-304.
梁维,2014.特提斯喜马拉雅金锑铅锌成矿带成矿作用研究[D].北京:中国地质大学.
梁维,杨竹森,郑远川,2015.藏南扎西康铅锌多金属矿绢云母Ar-Ar年龄及其成矿意义[J].地质学报,89(3):560-568.
梁维,李光明,张林奎,等,2020. 藏南错那洞铍稀有多金属成矿时代:来自热液白云母Ar-Ar年龄的约束[J].沉积与特提斯地质,40(1):76-81.
罗延钟, 1982. 评价激电异常的新方法[J]. 国外地质勘探技术, (1):18-25.
罗镇宽,1984.金矿床中碳质的来源及其在成矿过程中的作用[J].黄金,(1):20-22.
孟祥金,杨竹森,戚学祥,等,2008.藏南扎西康锑多金属矿硅-氧-氢同位素组成及其对成矿构造控制的响应[J].岩石学报,24(7):1649-1655.
莫如爵,刘绍斌,黄翠蓉,等,1989.中国石墨矿床地质[M].中国建筑工业出版社.
唐菊兴,刘敏院,郑文宝,等,2012.西藏自治区隆子县扎西康矿区铅锌多金属矿床资源储量核实报告[R].内部出版物.
王家映,1992.关于大地电磁的静校正问题[J].地质科技情报,1:69-76.
韦慧晓,孙晓明,翟伟,等,2010.藏南邦布大型金矿成矿流体He-Ar-S同位素组成及其成矿意义[J].岩石学报,26(6):1685-1691.
谢复新,1987.CO2红外光谱分析及其键矩的计算[J].安徽大学学报,2:44-47.
严良俊,胡文宝,陈清礼,等,2001.长偏移距瞬变电磁测深法在碳酸盐岩覆盖区落实局部构造的应用效果[J].地震地质,2:271-277.
张建芳,2010.北喜马拉雅扎西康铅锌锑银矿床成因研究[D].武汉:中国地质大学(武汉)硕士学位论文.
张进江,杨雄英,戚国伟,等,2011.马拉山穹窿的活动时限及其在藏南拆离系-北喜马拉雅片麻岩穹窿形成机制的应用[J].岩石学报,27(2):3535-3544.
张志,李光明,张林奎,等,2020. 藏南错那洞穹隆早渐新世含绿柱石花岗伟晶岩的成因机制及其地质意义[J].沉积与特提斯地质,40(2):14-30.
郑有业,多吉,马国桃,等,2007.藏南查拉普岩金矿床特征、发现及时代约束[J].地球科学,32(2):185-193.
郑有业,刘敏院,孙祥,等,2012.西藏扎西康锑多金属矿床类型、发现过程及意义[J].地球科学,37(5):1003-1014.
郑有业,孙祥,田立明,等,2014.北喜马拉雅东段金锑多金属成矿作用、矿床类型与成矿时代[J].大地构造与成矿学,38(1):108-118.
周峰,孙晓明,翟伟,等,2011.藏南折木朗造山型金矿成矿流体地球化学和成矿机制[J].岩石学报,27(9):2775-2785.
周宁,李发清,2014.双频激电在寻找有碳质干扰铅锌矿中的应用[J].矿产勘查,5:796-801.
邹芳,2014.高频红外法测定碳酸盐型石墨矿中固定碳的研究[J].矿物岩石,34(3):14-18.
-
计量
- 文章访问数: 1412
- PDF下载数: 56
- 施引文献: 0