Luerma, a newly discovered late Triassic porphyry copper-gold ore-spot in the western Gangdise metallogenic belt, Tibet
-
摘要: 鲁尔玛斑岩型铜(金)矿为冈底斯成矿带西段新发现的斑岩型矿点,目前已发现赋存于石英二长斑岩体中的斑岩型铜矿体1条,赋存于构造破碎带中的热液型脉状金(铜)矿体1条、热液型脉状铜矿体1条。以鲁尔玛含矿斑岩为中心,依次发育钾硅酸盐化、绢英岩化、青磐岩化,表现出斑岩型矿床的典型蚀变分带模式。其中,热液脉体从早到晚被可划分为:钾硅酸盐化脉(A脉)、石英-金属硫化物脉(B脉)以及石英-绿帘石-碳酸盐化脉(D脉)。这一新的发现,证实冈底斯成矿带西段具有斑岩型铜(金)矿床的找矿潜力,有望将冈底斯斑岩型铜矿带向西延伸近200km,同时也表明拉萨地体南缘的冈底斯成矿带斑岩型铜成矿作用最晚应该开始于晚三叠世。鲁尔玛斑岩型铜(金)矿点的发现,对深入理解冈底斯斑岩铜(金)矿带的成矿作用,完善冈底斯成矿带的成矿理论,更好地评价冈底斯西段找矿潜力,指导该地区的找矿突破,均具有重要意义。Abstract: Previously, almost all the porphyry copper-gold deposits in the Gangdise metallogenic belt are located at the eastern section of the Gangdise metallogenic belt, and their mineralization ages are younger than the late Triassic epoch. This paper discusses Luerma, the newly discovered late Triassic porphyry copper-gold ore-spot in the western Gangdise metallogenic belt. Zircon U-Pb dating and molybdenite Re-Os dating indicate that Luerma copper-gold occurrence is with a 212 Ma mineralization age, implying it is related to the subduction process of the Indian ocean plate northward to the Gangdise plate in the late Triassic epoch. The Luerma copper-gold ore-spot developed typical porphyry hydrothermal alteration zones, which can be divided into a potassium-silicification zone, asericitization zone, a clayization zone, and a propylitization-propylitization zone from ore-bearing quartz monzonite porphyry to wall rocks, respectively. By so far, three ore bodies are determined in Luerma copper-gold occurrence:one porphyry copper orebody occured in quartz monzonite porphyry, one hydrothermal vein gold-copper orebody and one hydrothermal vein-typed copper orebody occured in structural fracture zones respectively. Moreover, three main types of hydrothermal veins have been identified based on their mineral assemblages,cutting relationship and alteration features: the potassium-silicification vein (A-typed vein), the medium-term quartz-polymetallic sulfides vein (B-typed vein), and the epidote-carbonatation (D-typed vein), respectively. The discovery of Luerma ore-spot suggests that the western part of the Gangdise metallogenic belt is potential for porphyritic copper-gold deposits.
-
Key words:
- Luerma /
- Gangdise /
- porphyry copper-gold occurrence /
- late Triassic /
- subduction
-
-
Hou Z Q, Cook N J, 2009. Metallogenesis of the Tibetan collisional orogen: A review and introduction to the special issue[J]. Ore Geology Reviews, 36: 2-24.
Hou Z Q, Yang Z M, Lu Y J, et al., 2015. A Genetic Linkage Between Subduction-and Collision-Related Porphyry Cu Deposits in Continental Collision Zones[J]. Geology, 43:247-250.
Huang Y, Li G M, Ding J, et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China[J]. Acta Geologica Sinica (English Edition), 91(1): 109-134.
Huang H X, Li G M, Liu H, et al., 2019. Zircon U-Pb, Molybdenite Re-Os and Quartz Vein Rb-Sr Geochronology of the Luobuzhen Au-Ag and Hongshan Cu Deposits, Tibet, China: Implications for the Oligocene-Miocene Porphyry-Epithermal Metallogenic System[J].Minerals, 9(8): 476-491.
Huang Y, Li G M, Ding J, et al., 2017. Origin of the Newly Discovered Zhunuo Porphyry Cu-Mo-Au Deposit in the Western Part of the Gangdese Porphyry Copper Belt in the Southern Tibetan Plateau, SW China[J]. Acta Geologica Sinica (English Edition), 91(1): 109-134.
Liu H, Li G M, Huang H X, et al., 2018. Petrogenesis of Late Cretaceous Jiangla’angzong I-Type Granite in Central Lhasa Terrane, Tibet, China: Constraints from Whole-Rock Geochemistry, Zircon U-Pb Geochronology, and Sr-Nd-Pb-Hf Isotopes[J]. Acta Geologica Sinica (English Edition), 92(4): 1396-1414.
Mo X X, Niu Y L, Dong G C, et al., 2008. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth: a Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J]. Chemical Geology, 250(1):49~67.
Pan G T, Wang L Q, Li R S, et al., 2012. Tectonic Evolution of the Qinghai-Tibet Plateau.Journal of Asian Earth Sciences, 53: 3-14.
Qu X M, Hou Z Q, Zaw K, et al., 2017. Characteristics and genesis of gangdese porphyry copper deposits in the southern Tibetan plateau: preliminary geochemical and geochronological results[J].Ore Geology Reviews, 31(1), 205-223.
Seedorf E, Dilles J H, Proffett J M, et al., 2005. Porphyry deposits: charateristics and origin of hypogene features[J]. Economic Geology, 251-298.
Sillitoet R H, 2010. Porphyry copper system[J]. Economic Geology, 105:3-41.
Tafti R, Mortensen J K, Lang J R, et al., 2009. Jurassic U-Pb and Re-Os Ages for the Newly Discovered Xietongmen Cu-Au Porphyry District, Tibet, Prc: Implications for Metallogenic Epochs in the Southern Gangdese Belt[J]. Economic Geology, 104(1):127-136.
Wang R, Collins W J, Weinberg R F, et al., 2016. Xenoliths in ultrapotassic volcanic rocks in the Lhasa block: direct evidence for crust-mantle mixing and metamorphism in the deep crust[J]. Contributions to Mineralogy and Petrology, 171(7): 62.
Wang R, Richards J P, Zhou L M, et al., 2015. The Role of Indian and Tibetan lithosphere in spatial distribution of Cenozoic magmatism and porphyry Cu-Mo±Au deposits in the Gangdese belt, southern Tibet[J]. Earth-Science Reviews, 150: 68-94.
Wang R, Tafti R, Hou Z Q, et al., 2017. Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: Implication for continental arc-related porphyry Cu-Au mineralization[J].Chemical Geology, 451: 116-134.
Wang R, Weinberg R F, Collins W J,et al., 2018. Origin of post-collisional magmas and formation of porphyry Cu deposits in southern Tibet[J]. Earth-Science Reviews, 181: 122-143.
Xu Z Q, Dilek Y, Cao H, et al., 2015. Paleo-Tethyan Evolution of Tibet as Recorded in the East Cimmerides and West Cathaysides[J]. Journal of Asian Earth Sciences, 105: 320-337.
Yang Z M, Hou Z Z, Chang Z S, et al., 2016. Cospatial Eocene and Miocene Granitoids From the Jiru Cu Deposit in Tibet: Petrogenesis and Implications for the Formation of Collisional and Postcollisional Porphyry Cu Systems in Continental Collision Zones[J]. Lithos, 245(3): 243-257.
Zhao J X, Qin K Z, Li G M, et al., 2014. Collision-related genesis of the sharang porphyry molybdenum deposit, tibet: evidence from zircon U-Pb ages, re-os ages and Lu-Hf isotopes[J]. Ore Geology Reviews, 56(56): 312-326.
Zheng Y Y, Zhang G Y, Xu R K, et al., 2007. Geochronologic constraints on magmatic intrusions and mineralization of the zhunuo porphyry copper deposit in gangdese, tibet[J]. Chinese Science Bulletin, 52(22), 3139-3147.
Zheng Y Y, Sun X, Gao S B, et al., 2015. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt[J]. Journal of Asian Earth Sciences, 103: 23-39.
Zhou Q, Jiang Y H, Zhao P, et al., 2012. SHRIMP U-Pb dating on hydrothermal zircons: evidence for an Early Cretaceous epithermal event in the Middle Jurassic dexing porphyry copper deposit, southeast china[J]. Economic Geology, 107: 1507-1514.
Zhu, D C, Pan, G T, Chung, S L, et al., 2008. SHRIMP Zircon Age and Geochemical Constraints on the Origin of Lower Jurassic Volcanic Rocks From the Yeba Formation, Southern Gangdese, South Tibet[J]. International Geology Review,50(5): 442-471.
蔡青龙,郑志文,何俊,2015.西藏冈底斯西部地区花岗岩锆石U-Pb年龄及其地质意义[J].东华理工大学学报(自然科学版),38(1):49-57.
陈奇,谢琳,肖志坚,2007.青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化[J].东华理工大学学报(自然科学版),30(2):107-112.
丁林,Maksatbek S,蔡福龙,等,2017.印度与欧亚大陆初始碰撞时限、封闭方式和过程[J].中国科学:地球科学, 47:293-309.
耿全如, 李文昌, 王立全, 等, 2021.特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质, 41(2): 297-315.
苟正彬,刘函,李俊,等,2018.拉萨地块中北部尼雄地区早白垩世火山岩的成因及构造意义.地球科学,43(8):2780-2794.
韩善楚,姜垚,潘家永,等,2021.西藏冈底斯成矿带跃进沟铜矿床同位素地球化学特征研究[J].东华理工大学学报(自然科学版),44(5):423-432.
韩善楚,潘家永,郭国林,等,2008.跃进沟铜多金属矿床成矿元素赋存特征研究[J].东华理工大学学报(自然科学版),31(1):12-20.
何阳阳,温春齐,刘显凡,2016.西藏多不杂铜矿床硫铅同位素地球化学示踪[J].岩石矿物学杂志,35(5):855-862.
侯增谦,2010.大陆碰撞成矿论[J].地质学报,84(1):30-58.
黄瀚霄,李光明,刘洪,等,2018.冈底斯成矿带西段首次发现低硫化型浅成低温热液型矿床——罗布真金银多金属矿床[J].中国地质,44(3): 628-629.
黄瀚霄,张林奎,刘洪,等,2019.西藏冈底斯成矿带西段矿床类型、成矿作用和找矿方向[J].地球科学,44(6):1876-1887.
黄勇,丁俊,唐菊兴,等,2011.西藏雄村铜金矿床Ⅰ号矿体成矿构造背景与成矿物质来源探讨[J].成都理工大学学报(自然科学版),38(3):306-312.
解超明, 李才, 李光明, 等, 2020.西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质, 40(2): 1-13.
郎兴海,郭文铂,王旭辉,等,2019.西藏雄村矿集区含矿斑岩成因及构造意义:来自年代学及地球化学的约束[J].岩石学报,35(7):2105-2123.
黎心远,陈伟,曲晓明,等,2018.西藏申扎县雄梅铜矿床的硫、铅同位素特征及其成矿意义[J].矿床地质,37(3):643-655.
李奋其,刘伟,张士贞,等.2012.冈底斯南部打加错地区鸭洼基性杂岩的年代学及地球化学特征[J].地质学报,86(10):1592-1603.
李光明, 张林奎, 张志, 等, 2021.青藏高原南部的主要战略性矿产:勘查进展、资源潜力与找矿方向[J]. 沉积与特提斯地质, 41(2): 351-360.
李光明,潘桂棠,王高明,等,2004.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报(自然科学版),31(1):22-27.
李光明,张林奎,吴建阳,等,2020.青藏高原南部洋板块地质重建及科学意义[J].沉积与特提斯地质,40(1):1-14.
李金祥,秦克章,李光明,等,2011.冈底斯东段羌堆铜钼矿床年代学、矽卡岩石榴石成分及其意义[J],地质与勘探,47(1):11-19.
李应栩,黄永高,韩飞,等,2018.西藏中冈底斯成矿带中段铍矿化体的发现与意义[J].沉积与特提斯地质,38(4):64-69.
林彬,王立强,唐菊兴,等,2017.西藏玉龙铜矿带包买矿床含矿斑岩锆石U-Pb年代学[J].地球科学,42(9):1454-1471.
刘函, 岳鋆璋, 李俊, 等, 2020.拉萨地块西段尼雄地区拉嘎组物源示踪:来自碎屑岩地球化学的制约[J]. 沉积与特提斯地质, 40(2): 43-51.
刘洪,黄瀚霄,欧阳渊,等,2020a.基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J].沉积与特提斯地质,40(1):91-105.
刘洪,张林奎,黄瀚霄,等,2020b.冈底斯西段罗布真浅成低温热液型银金矿的成矿流体演化:来自流体包裹体、H-O同位素的证据.地学前缘,27(4):49-65.
刘洪,张林奎,黄瀚霄,等,2019a.冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化[J].地球科学,44(6): 1935-1956.
刘洪,李光明,黄瀚霄,等,2019b.冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究[J].矿床地质,38(4):631-643.
刘洪,夏祥标,黄瀚霄,等,2019c.西藏冈底斯成矿带西段学修玛尔幅水系沉积物地球化学多元统计分析与找矿远景区划分[J].桂林理工大学学报,39(4):847-855.
刘洪,李光明,黄瀚霄,等,2019d.西藏冈底斯成矿带发现晚三叠世斑岩型铜矿[J].中国地质,46(5):1238-1240.
刘洪,张林奎,黄瀚霄,等,2019e.西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因[J].地球科学,44(7):2339-2352.
吕梦鸿,刘洪,黄瀚霄,等,2019.水系沉积物地球化学勘查在西藏松多幅的找矿应用[J].地质调查与研究,42(02):143-53.
孟祥金,侯增谦,李振清,2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示[J].地质学报,80(4):554-560.
潘桂棠, 王立全, 耿全如, 等, 2020.班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J].沉积与特提斯地质, 40(3): 1-19.
潘桂棠,肖庆辉,陆松年,等,2009.中国大地构造单元划分.中国地质,36(1):1-28.
彭建华,赵希良,何 俊,等,2013.西藏冈底斯西部地区印支期岩浆岩的发现及其意义[J].东华理工大学学报(自然科学版),36(6):21-26.
彭建华,赵希良,何俊,等,2014.西藏冈底斯西部地区印支期闪长岩的特征及其地质意义[J].沉积与特提斯地质,34(1):102-107.
秦克章,李光明,赵俊兴,等,2008.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义[J].中国地质,35(6):1101-1112.
曲晓明,辛洪波,徐文艺,2007.西藏雄村特大型铜金矿床容矿火山岩的成因及其对成矿的贡献[J].地质学报,81(7),964-971.
宋旭波,李应栩,李光明,等,2018.西藏仁布县帕夏始新世埃达克质岩的发现及其意义[J].沉积与特提斯地质, 38(1):11-22.
宋扬,唐菊兴,曲晓明,等,2014.西藏班公湖—怒江成矿带研究进展及一些新认识[J].地球科学进展,29(7):795-809.
唐菊兴,张丽,李志军,等,2006.西藏玉龙铜矿床——鼻状构造圈闭控制的特大型矿床[J].矿床地质,25(6):652-662.
唐菊兴,2019.青藏高原及邻区重要成矿带矿产资源基地调查与研究进展[J].岩石学报,35(3):3-10.
王立全, 王保弟, 李光明, 等, 2021.东特提斯地质调查研究进展综述[J]. 沉积与特提斯地质, 41(2): 283-296.
吴海辉,张高庆,王伟,2017.西藏山南金鲁西蛇绿岩U-Pb同位素年龄及地质意义[J].东华理工大学学报(自然科学版),40(3):246-252.
谢玉玲,徐九华,杨竹森,等,2004. 铜官山铜矿床矽卡岩矿物中流体包裹体及子矿物的扫描电镜研究[J].矿床地质,23(3):375-348.
许志琴,杨经绥,李文昌,等,2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860.
杨经绥,许志琴,李天福,等,2007.青藏高原拉萨地块中的大洋俯冲型榴辉岩:古特提斯洋盆的残留? 地质通报, 26(10):1277-1287
杨志明,侯增谦,李振清,等,2008.西藏驱龙斑岩铜钼矿床中UST石英的发现:初始岩浆流体的直接记录[J].矿床地质,27(2),188-199.
张红,钟康惠,吴华,等,2015.西藏冈底斯成矿带与俯冲-碰撞作用相关的斑岩铜矿的找矿方向[J].沉积与特提斯地质,35(3):88-93.
张克信, 何卫红, 徐亚东, 等, 2021.论从俯冲增生杂岩带重建洋板块地层主要类型与序列:以青藏特提斯二叠系为例[J].沉积与特提斯地质, 41(2): 137-151.
张士贞, 秦雅东, 李勇, 等, 2021.西藏许如错地区洁居纳卓组碎屑锆石U-Pb年龄及其地质意义[J]. 沉积与特提斯地质, 41(1): 24-32.
赵希良,龚臣,何俊,等,2013.西藏措勤县打加错地区斑岩型铜矿点发现及其意义[J].东华理工大学学报(自然科学版),36(6):13-20.
周清,姜耀辉,廖世勇,等,2013.德兴斑岩铜矿床研究新进展[J].地质论评,59(5),933-940.
朱同兴, 冯心涛, 王晓飞, 等, 2020.青藏高原晚三叠世构造-古地理综述[J]. 沉积与特提斯地质, 40(3): 59-71.
-
计量
- 文章访问数: 1924
- PDF下载数: 92
- 施引文献: 0