扬子陆块西缘江浪穹窿超基性岩的成因:锆石U-Pb定年、岩石地球化学及Sr-Nd同位素

代堰锫, 李同柱, 张惠华. 2021. 扬子陆块西缘江浪穹窿超基性岩的成因:锆石U-Pb定年、岩石地球化学及Sr-Nd同位素. 沉积与特提斯地质, 41(4): 573-584. doi: 10.19826/j.cnki.1009-3850.2021.01002
引用本文: 代堰锫, 李同柱, 张惠华. 2021. 扬子陆块西缘江浪穹窿超基性岩的成因:锆石U-Pb定年、岩石地球化学及Sr-Nd同位素. 沉积与特提斯地质, 41(4): 573-584. doi: 10.19826/j.cnki.1009-3850.2021.01002
DAI Yanpei, LI Tongzhu, ZHANG Huihua. 2021. Petrogenesis of the ultramafic pluton in the Jianglang dome, western margin of the Yangtze block: Zircon U-Pb dating, geochemistry and Sr-Nd isotopes. Sedimentary Geology and Tethyan Geology, 41(4): 573-584. doi: 10.19826/j.cnki.1009-3850.2021.01002
Citation: DAI Yanpei, LI Tongzhu, ZHANG Huihua. 2021. Petrogenesis of the ultramafic pluton in the Jianglang dome, western margin of the Yangtze block: Zircon U-Pb dating, geochemistry and Sr-Nd isotopes. Sedimentary Geology and Tethyan Geology, 41(4): 573-584. doi: 10.19826/j.cnki.1009-3850.2021.01002

扬子陆块西缘江浪穹窿超基性岩的成因:锆石U-Pb定年、岩石地球化学及Sr-Nd同位素

  • 基金项目:

    国家自然科学基金青年科学基金项目(41902068)

详细信息
    作者简介: 代堰锫(1986-),男,副研究员,理学博士,主要从事岩石学与矿床地球化学研究。E-mail:diyeplas@foxmail.com
  • 中图分类号: P581

Petrogenesis of the ultramafic pluton in the Jianglang dome, western margin of the Yangtze block: Zircon U-Pb dating, geochemistry and Sr-Nd isotopes

  • 江浪穹窿位于扬子陆块西缘,本文作者在穹窿南部新发现一套侵入于二叠系及志留系的超基性岩,岩石主要由蛇纹石(约60%)、橄榄石(约30%)和少量磁铁矿(约5%)、角闪石(约5%)组成。为探讨超基性岩的成因,本文进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学及Sr-Nd同位素研究。定年结果表明,超基性岩中发育大量2427~430 Ma的捕获锆石,最年轻一组岩浆锆石206Pb/238U加权平均年龄为222.3±4.4 Ma(MSWD=1.9,n=6)。主微量元素分析显示岩石:(1)具有低的SiO2含量(46.76%~39.07%)、高的Mg#值(82.3~74.0)与Cr、Co、Ni丰度;(2)稀土元素含量(ΣREE平均31.8 μg/g)与(La/Yb)N值(5.26~1.38)偏低,稀土配分型式较为平坦,具有较弱的Ce负异常(Ce/Ce*=0.80~0.67);(3)富集大离子亲石元素Rb、Ba和U,亏损高场强元素Zr和Hf;(4)(Th/Yb)PM值(29.8~1.56)、(Th/Ta)PM值(0.22~0.03)、(La/Nb)PM值(1.91~0.39)及La/Sm值(5.88~1.11)较低。Sr-Nd同位素分析显示,超基性岩具有较低的(87Sr/86Sr)i值(0.706872~0.702598)和高的εNd(t)值(8.02~5.64),成分接近于亏损地幔和岛弧玄武岩,计算表明地壳物质的混染程度低于5%。结合前人研究成果,本文认为超基性岩结晶年龄为222.3 Ma,可能形成于古特提斯洋闭合阶段的岛弧背景;原始岩浆来自高度部分熔融的地幔源区,上升侵位过程中可能经历了铬铁矿与橄榄石的分离结晶作用。此外,捕获锆石的年龄谱反映江浪穹窿很可能存在太古宙—古元古代变质基底,并且具有Rodinia超大陆会聚—裂解以及泛非事件的地质年龄记录。
  • 加载中
  • Anderson T, 2002. Corrections of common lead in U-Pb analyses that do not report 206Pb[J]. Chemical Geology,192: 59-79.

    Depaolo D J, 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters,53(2): 189-202.

    Fryer B J, Jackson S E, Longerich H P, 1993. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Geology,109: 1-8.

    Gill R,2010. Igneous rocks and processes: A practical guide[M]. Chichester: Wiley-Blackwell:1-472.

    Hoskin P W O, Schaltegger U, 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in mineralogy and geochemistry,53: 27-62.

    Le Bas M J, Le Maitre R W, Streckeisen A, et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology,27(3): 745-750.

    Li Z X, Bogdanova S V, Collins A S, et al., 2008. Assembly, configuration, and break-up history of Rodinia: Asynthesis[J]. Precambrian Research,160(1-2): 179-210.

    Liu S,Hu R Z, Gao S, et al., 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong province, east China: Constrains on their petrogenesis and geodynamic significance[J]. Chemical Geology,255(3): 329-345.

    Miyashiro A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science,274(4): 321-355.

    Mullen E D, 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters,62: 53-62.

    Pearce J A, Cann J R, 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters,19: 290-300.

    Peng Z X, Mahoney J, Hooper P,et al., 1994.A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan traps[J]. Geochimica et Cosmochimica Acta,58: 267-288.

    Qi L, Zhou M F, 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SWChina[J]. Chemical Geology,248(1-2): 83-103.

    Rino S, Kon Y, Sato W, et al., 2008. The Grenvillian and Pan-african orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research,14: 51-72.

    Roger F, Jolivet M, Malavieille J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269.

    Sun S S, McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313-345.

    Taylor S R, McLennan S M,1985. The continental crust: Its composition and evolution[M]. Oxford: Blackwell:1-328.

    Yan D P, Zhou M F, SongH L, et al., 2003. Structural style and tectonic significance of the Jianglang dome in the eastern margin of the Tibetan Plateau, China[J]. Journal of Structural Geology, 25(5): 765-779.

    Zhang H F, Gao S, Zhong Z Q, et al., 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology,186(3):281-299.

    Zhou M F, Yan D P, Kennedy A K, et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51-67.

    次琼, 永忠拉达, 阿旺旦增, 等, 2020. 西藏冈底斯岩带曲水杂岩体锆石LA-ICP-MS U-Pb年龄及其地质意义[J].沉积与特提斯地质,40(2): 116-128.

    代堰锫, 张惠华, 朱玉娣, 等, 2016. 扬子陆块西缘江浪穹窿及“里伍式”富铜矿床研究进展与问题[J]. 地球科学与环境学报,38(1): 66-78.

    代堰锫, 张连昌, 王长乐, 等, 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景[J]. 岩石学报,28(11): 3574-3594.

    邓晋福, 苏尚国, 周肃, 等, 2003. 华北地区燕山期岩石圈减薄的深部过程[J]. 地学前缘,10(3):41-50.

    冯光英, 刘燊, 冯彩霞, 等, 2011. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报,27(6), 1594-1606.

    冯宏业, 许英霞, 唐冬梅, 等, 2014. 东天山圪塔山口镁铁-超镁铁质岩体地球化学、锆石U-Pb年代学及其对Ni-Cu成矿的指示[J]. 岩石学报,30(6): 1558-1574.

    耿元生, 陆松年, 2014. 中国前寒武纪地层年代学研究的进展和相关问题[J]. 地学前缘,21(2): 102-118.

    解超明, 李才, 李光明, 等, 2020. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质,40(2): 1-13.

    李惠民, 陈志宏, 相振群, 等, 2006. 秦岭造山带商南—西峡地区富水杂岩的变辉长岩中斜锆石与锆石U-Pb同位素年龄的差异[J]. 地质通报,25(6): 653-659.

    李立兴, 李厚民, 崔艳合, 等, 2012. 河北高寺台含铬超基性岩杂岩体成岩成矿时代及岩石成因[J]. 岩石学报,28(11): 3757-3771.

    李献华, 李正祥, 周汉文, 等, 2002. 川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究: 岩石成因与地球动力学意义[J]. 地学前缘,9(4): 329-338.

    莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造—岩浆事件的约束[J]. 地学前缘,13(6): 43-51.

    潘桂棠, 王立全, 耿全如, 等, 2020. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构—特提斯大洋地质及演化问题[J]. 沉积与特提斯地质,40(3): 1-19.

    王永, 吴玉, 陈柏林, 等, 2020. 北阿尔金地区超基性岩地球化学特征及其成矿潜力分析[J]. 中国地质,47(4): 1220-1240.

    吴建亮, 尹显科, 王波, 等, 2019. 藏北阿翁错地区中基性脉岩年代学、地球化学特征及其板内伸展构造作用[J]. 中国地质,46(6): 1356-1371.

    许志琴, 侯立玮, 王宗秀, 1992. 中国松潘带的造山过程[M]. 北京: 地质出版社: 1-190.

    颜丹平, 宋鸿林, 傅昭仁, 等, 1997. 扬子地台西缘变质核杂岩带[M]. 北京: 地质出版社: 1-94.

    颜丹平, 周美夫, 宋鸿林, 等, 2002. 华南在Rodinia古陆中位置的讨论: 扬子地块西缘变质—岩浆杂岩证据及其与Seychelles地块的对比[J]. 地学前缘,9(4): 249-256.

    游振东, 程素华, 赖兴运, 2006. 四川丹巴穹状变质地体[J]. 地学前缘,13(4): 148-159.

    张惠华, 代堰锫, 胡智丹, 等, 2016a. 川西江浪穹窿煌斑岩地球化学特征及锆石U-Pb定年[J]. 矿物岩石地球化学通报,35(4): 663-673.

    张惠华, 代堰锫, 王昌南, 等, 2016b. 川西江浪穹窿甲坝岩组角闪岩地球化学特征、锆石U-Pb定年及地质意义[J]. 矿物岩石,36(2): 47-54.

    周家云, 谭洪旗, 龚大兴, 等, 2013. 川西江浪穹隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究[J]. 矿物岩石,33(4): 42-52.

  • 加载中
计量
  • 文章访问数:  1564
  • PDF下载数:  69
  • 施引文献:  0
出版历程
收稿日期:  2020-10-13
修回日期:  2020-12-22

目录