Petrogenesis of the ultramafic pluton in the Jianglang dome, western margin of the Yangtze block: Zircon U-Pb dating, geochemistry and Sr-Nd isotopes
-
摘要: 江浪穹窿位于扬子陆块西缘,本文作者在穹窿南部新发现一套侵入于二叠系及志留系的超基性岩,岩石主要由蛇纹石(约60%)、橄榄石(约30%)和少量磁铁矿(约5%)、角闪石(约5%)组成。为探讨超基性岩的成因,本文进行了LA-ICP-MS锆石U-Pb定年、岩石地球化学及Sr-Nd同位素研究。定年结果表明,超基性岩中发育大量2427~430 Ma的捕获锆石,最年轻一组岩浆锆石206Pb/238U加权平均年龄为222.3±4.4 Ma(MSWD=1.9,n=6)。主微量元素分析显示岩石:(1)具有低的SiO2含量(46.76%~39.07%)、高的Mg#值(82.3~74.0)与Cr、Co、Ni丰度;(2)稀土元素含量(ΣREE平均31.8 μg/g)与(La/Yb)N值(5.26~1.38)偏低,稀土配分型式较为平坦,具有较弱的Ce负异常(Ce/Ce*=0.80~0.67);(3)富集大离子亲石元素Rb、Ba和U,亏损高场强元素Zr和Hf;(4)(Th/Yb)PM值(29.8~1.56)、(Th/Ta)PM值(0.22~0.03)、(La/Nb)PM值(1.91~0.39)及La/Sm值(5.88~1.11)较低。Sr-Nd同位素分析显示,超基性岩具有较低的(87Sr/86Sr)i值(0.706872~0.702598)和高的εNd(t)值(8.02~5.64),成分接近于亏损地幔和岛弧玄武岩,计算表明地壳物质的混染程度低于5%。结合前人研究成果,本文认为超基性岩结晶年龄为222.3 Ma,可能形成于古特提斯洋闭合阶段的岛弧背景;原始岩浆来自高度部分熔融的地幔源区,上升侵位过程中可能经历了铬铁矿与橄榄石的分离结晶作用。此外,捕获锆石的年龄谱反映江浪穹窿很可能存在太古宙—古元古代变质基底,并且具有Rodinia超大陆会聚—裂解以及泛非事件的地质年龄记录。Abstract: The Jianglang dome is located in the western margin of the Yangtze block.A set of ultramafic pluton were newly discovered in the south of the Jianglang dome and they intruded into the Permian and Silurian. The rocks are mainly composed of serpentine (ca. 60%), olivine (ca. 30%) with minor magnetite (ca. 5%) and hornblende (ca. 5%). In order to discuss the petrogenesis, we performed LA-ICP-MS zircon U-Pb dating, geochemical and Sr-Nd isotopic studies. Dating results show that the ultramafic pluton have numerous 2427~430 Ma captured zircons, and 206Pb/238U weighted mean age of the youngest magmatic zircons is 222.3±4.4 Ma (MSWD=1.9, n=6). Geochemical analyses results show that: (1) the rock samples exhibit low SiO2contents (46.76%~39.07%) with high Mg# values (82.3~74.0) and Cr, Co, Ni abundances; (2) low ΣREE (average 31.8 μg/g) and (La/Yb)N values (5.26~1.38) with flat REE pattern and negative Ce anomalies (Ce/Ce*=0.80~0.67); (3) enrichment in large ion lithophile elements (e.g., Rb, Ba and U) and depletion in high field strength elements (e.g., Zr and Hf); (4) low (Th/Yb)PM values (29.8~1.56), (Th/Ta)PM values (0.22~0.03), (La/Nb)PM values (1.91~0.39) and La/Sm values (5.88~1.11). Sr-Nd isotopic analyses indicate that the samples have low (87Sr/86Sr)ivalues (0.706872~0.702598) and high εNd(t) values (8.02~5.64). Their compositions are close to the depleted mantle and island arc basalts with contamination of crustal materials lower than 5%. Combining with the previous studies, we propose that the crystallization age of ultramafic pluton is ca. 222.3 Ma which probably formed under island arc setting of the Paleo-Tethys closure stage. The primitive magma was possibly derived from highly partial melting of mantle source region. The magma might experience crystallization differentiation of chromite and olivine. In addition, the age spectrum of captured zircons reflects that Archean-Palaeoproterozoic metamorphosed basements most likely exist in the Jianglang dome, where also have geological age records of the Rodinia supercontinent convergence-disintegration processes and Pan-African events.
-
Key words:
- ultramafic pluton /
- zircon U-Pb dating /
- geochemistry /
- Sr-Nd isotopes /
- Jianglang dome
-
-
Anderson T, 2002. Corrections of common lead in U-Pb analyses that do not report 206Pb[J]. Chemical Geology,192: 59-79.
Depaolo D J, 1981. Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization[J]. Earth and Planetary Science Letters,53(2): 189-202.
Fryer B J, Jackson S E, Longerich H P, 1993. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology[J]. Chemical Geology,109: 1-8.
Gill R,2010. Igneous rocks and processes: A practical guide[M]. Chichester: Wiley-Blackwell:1-472.
Hoskin P W O, Schaltegger U, 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in mineralogy and geochemistry,53: 27-62.
Le Bas M J, Le Maitre R W, Streckeisen A, et al., 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram[J]. Journal of Petrology,27(3): 745-750.
Li Z X, Bogdanova S V, Collins A S, et al., 2008. Assembly, configuration, and break-up history of Rodinia: Asynthesis[J]. Precambrian Research,160(1-2): 179-210.
Liu S,Hu R Z, Gao S, et al., 2008. Zircon U-Pb geochronology and major, trace elemental and Sr-Nd-Pb isotopic geochemistry of mafic dykes in western Shandong province, east China: Constrains on their petrogenesis and geodynamic significance[J]. Chemical Geology,255(3): 329-345.
Miyashiro A, 1974. Volcanic rock series in island arcs and active continental margins[J]. American Journal of Science,274(4): 321-355.
Mullen E D, 1983. MnO/TiO2/P2O5: A minor element discriminant for basaltic rocks of oceanic environments and its implications for petrogenesis[J]. Earth and Planetary Science Letters,62: 53-62.
Pearce J A, Cann J R, 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses[J]. Earth and Planetary Science Letters,19: 290-300.
Peng Z X, Mahoney J, Hooper P,et al., 1994.A role for lower continental crust in flood basalt genesis? Isotopic and incompatible element study of the lower six formations of the western Deccan traps[J]. Geochimica et Cosmochimica Acta,58: 267-288.
Qi L, Zhou M F, 2008. Platinum-group elemental and Sr-Nd-Os isotopic geochemistry of Permian Emeishan flood basalts in Guizhou Province, SWChina[J]. Chemical Geology,248(1-2): 83-103.
Rino S, Kon Y, Sato W, et al., 2008. The Grenvillian and Pan-african orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research,14: 51-72.
Roger F, Jolivet M, Malavieille J, 2010. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis[J]. Journal of Asian Earth Sciences, 39(4): 254-269.
Sun S S, McDonough W F, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 42: 313-345.
Taylor S R, McLennan S M,1985. The continental crust: Its composition and evolution[M]. Oxford: Blackwell:1-328.
Yan D P, Zhou M F, SongH L, et al., 2003. Structural style and tectonic significance of the Jianglang dome in the eastern margin of the Tibetan Plateau, China[J]. Journal of Structural Geology, 25(5): 765-779.
Zhang H F, Gao S, Zhong Z Q, et al., 2002. Geochemical and Sr-Nd-Pb isotopic compositions of Cretaceous granitoids: Constraints on tectonic framework and crustal structure of the Dabieshan ultrahigh-pressure metamorphic belt, China[J]. Chemical Geology,186(3):281-299.
Zhou M F, Yan D P, Kennedy A K, et al., 2002. SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51-67.
次琼, 永忠拉达, 阿旺旦增, 等, 2020. 西藏冈底斯岩带曲水杂岩体锆石LA-ICP-MS U-Pb年龄及其地质意义[J].沉积与特提斯地质,40(2): 116-128.
代堰锫, 张惠华, 朱玉娣, 等, 2016. 扬子陆块西缘江浪穹窿及“里伍式”富铜矿床研究进展与问题[J]. 地球科学与环境学报,38(1): 66-78.
代堰锫, 张连昌, 王长乐, 等, 2012. 辽宁本溪歪头山条带状铁矿的成因类型、形成时代及构造背景[J]. 岩石学报,28(11): 3574-3594.
邓晋福, 苏尚国, 周肃, 等, 2003. 华北地区燕山期岩石圈减薄的深部过程[J]. 地学前缘,10(3):41-50.
冯光英, 刘燊, 冯彩霞, 等, 2011. 吉林红旗岭超基性岩体的锆石U-Pb年龄、Sr-Nd-Hf同位素特征及岩石成因[J]. 岩石学报,27(6), 1594-1606.
冯宏业, 许英霞, 唐冬梅, 等, 2014. 东天山圪塔山口镁铁-超镁铁质岩体地球化学、锆石U-Pb年代学及其对Ni-Cu成矿的指示[J]. 岩石学报,30(6): 1558-1574.
耿元生, 陆松年, 2014. 中国前寒武纪地层年代学研究的进展和相关问题[J]. 地学前缘,21(2): 102-118.
解超明, 李才, 李光明, 等, 2020. 西藏松多古特提斯洋研究进展与存在问题[J]. 沉积与特提斯地质,40(2): 1-13.
李惠民, 陈志宏, 相振群, 等, 2006. 秦岭造山带商南—西峡地区富水杂岩的变辉长岩中斜锆石与锆石U-Pb同位素年龄的差异[J]. 地质通报,25(6): 653-659.
李立兴, 李厚民, 崔艳合, 等, 2012. 河北高寺台含铬超基性岩杂岩体成岩成矿时代及岩石成因[J]. 岩石学报,28(11): 3757-3771.
李献华, 李正祥, 周汉文, 等, 2002. 川西新元古代玄武质岩浆岩的锆石U-Pb年代学、元素和Nd同位素研究: 岩石成因与地球动力学意义[J]. 地学前缘,9(4): 329-338.
莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造—岩浆事件的约束[J]. 地学前缘,13(6): 43-51.
潘桂棠, 王立全, 耿全如, 等, 2020. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构—特提斯大洋地质及演化问题[J]. 沉积与特提斯地质,40(3): 1-19.
王永, 吴玉, 陈柏林, 等, 2020. 北阿尔金地区超基性岩地球化学特征及其成矿潜力分析[J]. 中国地质,47(4): 1220-1240.
吴建亮, 尹显科, 王波, 等, 2019. 藏北阿翁错地区中基性脉岩年代学、地球化学特征及其板内伸展构造作用[J]. 中国地质,46(6): 1356-1371.
许志琴, 侯立玮, 王宗秀, 1992. 中国松潘带的造山过程[M]. 北京: 地质出版社: 1-190.
颜丹平, 宋鸿林, 傅昭仁, 等, 1997. 扬子地台西缘变质核杂岩带[M]. 北京: 地质出版社: 1-94.
颜丹平, 周美夫, 宋鸿林, 等, 2002. 华南在Rodinia古陆中位置的讨论: 扬子地块西缘变质—岩浆杂岩证据及其与Seychelles地块的对比[J]. 地学前缘,9(4): 249-256.
游振东, 程素华, 赖兴运, 2006. 四川丹巴穹状变质地体[J]. 地学前缘,13(4): 148-159.
张惠华, 代堰锫, 胡智丹, 等, 2016a. 川西江浪穹窿煌斑岩地球化学特征及锆石U-Pb定年[J]. 矿物岩石地球化学通报,35(4): 663-673.
张惠华, 代堰锫, 王昌南, 等, 2016b. 川西江浪穹窿甲坝岩组角闪岩地球化学特征、锆石U-Pb定年及地质意义[J]. 矿物岩石,36(2): 47-54.
周家云, 谭洪旗, 龚大兴, 等, 2013. 川西江浪穹隆核部新火山花岗岩LA-ICP-MS锆石U-Pb定年和Hf同位素研究[J]. 矿物岩石,33(4): 42-52.
-
计量
- 文章访问数: 1564
- PDF下载数: 69
- 施引文献: 0