Elements' migration during ore-forming process, Yata gold deposit, Southwestern Guizhou, China
-
摘要: 黔西南册亨县丫他金矿是扬子地块西南缘右江盆地中的重要卡林型金矿之一,产于三叠系巨厚的裂陷槽盆相复理石建造碎屑岩相区中。矿体受控于褶皱断裂带,其形态、规模、产状受高角度断裂带控制。根据典型矿物蚀变组合,可划分三个成矿阶段:铁白云石-黄铁矿阶段、白云石-黄铁矿-似碧玉岩-多金属矿物阶段以及毒砂-雌雄黄-方解石-石英阶段。本文为探究丫他金矿成矿过程中元素的迁移特征,通过采集不同矿化程度的样品,采用Isocon图解法对元素质量平衡进行了定量计算,结果显示在成矿作用过程中,伴随着持续的SiO2含量升高以及CaO含量的降低,指示硅化与去碳酸盐化与成矿关系密切;K2O和TFe2O3含量虽有变化但过程中有所波动,表现为载金矿物黄铁矿与黏土矿物的沉淀;TiO2和Al2O3含量在各个阶段岩石中变化不大,且显示出较高的平均值。与金矿化密切相关的微量元素是As、Sb、W、Hg、Ag、Cu、Zn、Tl,随着成矿流体通过与围岩的相互作用成矿过程中发生迁移,在金以Au(HS)0或是Au(HS)2-络合物形式进入含砷黄铁矿晶格中的同时沉淀黄铜矿、闪锌矿、硫砷锑汞矿等其他金属矿物。Abstract: Located at Youjiang basin, southwest margin of Yangtze block, the Yata gold deposit is a Carlin-type gold deposit hosted by a series of Triassic thick basin-face flysch formation and controlled by the high angle thrust-fault system. Based on detailed study of relationship of ore minerals and alteration, the ore-forming process of Yata gold deposit can be divided into three stages, including the Fe-dolomite-pyrite stage, the dolomite-pyrite-jasperoid-polymetallic minerals stage, and the asenopyrite-orpiment-realgar-calcite-quartz stage. In order to figure out the elements’ migration during ore-forming process, we have collected samples with different degrees of mineralization and conducted mass balance quantitative calculation using Isocon graphic method. The results show that mineralization is companied by clear increase of SiO2 content and decrease of CaO content, which represents the existence of ore-related silification and decarbenation. The contents of K2O and TFe2O3 change with slight fluctuation, suggesting the deposition of gold-bearing pyrite and clay minerals. The average contents of TiO2 and Al2O3 are stable and relatively high in different stages. As, Sb, W, Hg, Ag, Cu, Zn, and Tl have showed intimate relationship in mineralization while trace elements migrate between host rock and ore-fluid during fluid-host rock reaction, polymetallic minerals e.g. chalcopyrite, sphalerite, routhierite are deposited while gold entered the crystal framework of As-pyrite as Au(HS)0 or Au(HS)2-.
-
Key words:
- elements migration /
- mineralization process /
- Isocon graphic method /
- Yata gold deposit /
- Youjiang basin
-
-
Bowers T S, 1991. The deposition of gold and other metals: pressure-induced fluid immiscibility and associated stable isotope signatures [J]. Geochimica et Cosmochimica Acta, 55: 2417-2434.
Cail T L, Cline J S, 2001. Alteration associated with gold deposition at the Getchell Carlin-type gold deposit, north-central Nevada [J]. Economic Geology, 96(6): 1343-1359.
Chen M H, Mao J W, Li C, et al., 2015a. Re-Os is ochron ages for arsenopyrite from Carlin-like gold deposits in the Yunnan-Guizhou-Guangxi “golden triangle”, southwestern China [J]. Ore Geology Review, 64: 316-327.
Chen M H, Zhang Z Q, Santosh M, et al., 2015b. The Carlin-type gold deposits of the “golden triangle” of SW China:Pb and S isotopic constraints for the ore genesis [J]. Journal of Asian Earth Sciences, 103: 115-128.
Cline J S, Hofstra A H, Muntean J L, et al., 2005. Carlin-type gold deposit in Nevada: critical geologic characteristics and viable model [J]. Economic Geology 100th Anniversary Volume, 451-484.
Cline J S, 2018. Nevada’s Carlin-type gold deposits: What we’ve learned during the past 10 to 15 years [J]. Reviews in Economic Geology, 20: 7-37.
Daliran F, Hofstra A H, Walther J, et al., 2018. Ore genesis constraints on the Agdarreh and Zarshouran Carlin-type gold deposits in the Takab region of northwestern Iran [J]. Reviews in Economic Geology, 20: 299-333.
Deditius A P, Utsunomiya S, Renock D, et al., 2008. A proposed new type of arsenian pyrite: composition nanostructure and geological significance [J]. Geochimica et Cosmochimica Acta, 72: 2919-2933.
Fithian M T, Holley E A, Kelly N M, 2018. Geology of gold deposits at the Marigold mine, Battle Mountain district, Nevada [J]. Reviews in Economic Geology, 20: 121-155.
Grant J A, 1986. The isocon diagram-a simple solution to Gresens’ equation for metasomatic alteration [J]. Economic Geology, 81(8): 1976-1982.
Gresens R L, 1967. Composition-volume relationships of metasomatism [J]. Chemical Geology, 2: 47-65.
Hofstra A H, Cline J S, 2000. Characteristics and models for Carlin-type gold deposits [J]. Reviews in Economic Geology, 13: 163-220.
Hou L, Peng H J, Ding J, et al., 2016. Texture and in-situ chemical and isotopic analyses of pyrite, Huijiangbao Trend, Youjiang Basin, China: Implications for paragenesis and source of S [J]. Economic Geology, 111: 331-353.
Loucks R R, Mavrogenes J A, 1999. Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions [J]. Science, 284: 2159-2163.
Metcalfe I, 2011. Tectonic framework and Phanerozoic evolution of Sundaland [J]. Gondwana Research, 19(1): 3-21.
Palinkas S S, Hofstra A H, Percival T J, et al., 2018. Comparison of the All char Au-As-Sb-Tl deposits, Republic of Macedonia, with Carlin-type gold deposits [J]. Reviews in Economic Geology, 20: 335-363.
Su W C, Heinrich C A, Pettke T, et al., 2009a. Sediment-hosted gold deposits in Guizhou, China: Products of wall-rock sulfidation by deep crustal fluid [J]. Economic Geology, 104: 73-93.
Su W C, Hu R Z, Xia B, et al., 2009b. Calcite Sm-Nd isochron age of the Shuiyindong Carlin-type Au deposit, Guizhou, China [J]. Chemical Geology, 258: 269-274.
Su W C, Zhang H T, Hu R Z, et al., 2012. Mineralogy and geochemistry of gold-bearing arsenian pyrite from the Shuiyindong Carlin-type gold deposits, Guizhou, China: Implication for gold depositional processes [J]. Mineralium Deposita, 47: 653-662.
Wu S Y, Hou L, Jowitt S M, et al., 2019. Geochronology, geochemistry and petrogenesis of Late Triassic dolerite associated with Nibao gold deposit, Youjiang Basin, southwestern China: implications for post-collisional magmatism and its relationships with Carlin-like gold mineralization [J]. Ore Geology Reviews, 111: 102971.
Xu Yigang, He Bin, Chung Sunlin, et al., 2004. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province [J]. Geology, 32(10): 917-920.
曾允孚,刘文均,陈洪德,等,1995. 华南右江复合盆地的沉积构造演化[J]. 地质学报,69(2):113-124.
陈懋弘,毛景文,Uttley P J,等,2007a. 贵州锦丰(烂泥沟)超大型金矿床构造解析及构造成矿作用[J]. 矿床地质,26(4):380-396.
陈懋弘,毛景文,屈文俊,等,2007b. 贵州贞丰烂泥沟卡林型金矿床含砷黄铁矿Re-Os同位素测年及地质意义[J]. 地质论评,53(3):371-382.
李培,邓小虎,陈守余,等,2011. 个旧蚀变岩型铜多金属矿床围岩蚀变过程中元素迁移定量研究[J]. 地质找矿论丛,26(2):176-181.
刘平,杜芳应,杜昌乾,等,2006. 从流体包裹体特征探讨泥堡金矿成因[J]. 贵州地质,23(1):44-50.
刘平,雷志远,叶德书,等,2006.贵州泥堡金矿地质地球化学特征[J]. 沉积与特提斯地质, 26(4):78-85.
刘显凡,吴德超,刘远辉,等,2003.黔西南低温成矿域中不同层位不同类型金矿的内在统一成矿机制探讨[J].沉积与特提斯地质, 23(3):93-101.
刘艳鹏,马生明,朱立新,等,2015. 安徽兆吉口热液型铅锌矿区元素迁移量三维地球化学勘查模型[J]. 地学前缘,22(4):141-151.
王疆丽,林方成,于远山,等,2014. 右江沉积盆地印支-燕山期金矿金矿成矿系统研究[J]. 地质与勘探, 50(1):105-113.
吴程赟,顾雪祥,刘丽,等,2012. 贵州丫他卡林型金矿床流体包裹体特征及其成矿意义[J]. 现代地质,26(2):277-285.
吴松洋,2019. 黔西南卡林型金矿构造-岩浆-热液成矿模式研究[D]. 北京:中国地质大学.
吴松洋,侯林,丁俊,等,2016. 黔西南卡林型金矿矿田控矿构造类型及成矿流体特征[J].岩石学报, 32(8):2407-2424.
夏勇,张瑜,苏文超,等. 2009. 黔西南水银洞层控超大型卡林型金矿床成矿模式及成矿预测研究[J]. 地质学报,83(10):1473-1482.
项新葵,尹青青,丰成友,等,2015. 赣北石门寺钨多金属矿床花岗闪长岩蚀变带元素、流体迁移规律及其对成矿作用的制约[J]. 地质学报,87(7):1273-1287.
张伟,季国松,廖国忠,等,2020.黔西南“断控型”金矿床的找矿模式与勘探评价方法—以丫他金矿床为例[J]. 地质学报,95,doi: 10. 19762/j. cnki. dizhixuebao. 20211005.
朱赖民,刘显凡,金景福,等,1998. 滇-黔-桂微细浸染型金矿床时空分布与成矿流体来源研究[J]. 地质科学,33(4):463-474.
-
计量
- 文章访问数: 1766
- PDF下载数: 91
- 施引文献: 0