The carbon isotope fluctuation and its origin interpretion during the Early to Middle Jurassic transition period in the Shuanghu area of Qiangtang Basin
-
摘要: 藏北双湖县巴岭乡地区出露一套深水相黑色页岩地层,包括下侏罗统曲色组和中侏罗统色哇组二个组地层单元。根据菊石化石控制的生物地层时代,下伏曲色组划归Pliensbachian-Toarcian 阶,上覆色哇组级代表Aalenian-Bajocian 期沉积,二者之间为连续沉积,是目前西藏特提斯域菊石化石控制程度最高的中下侏罗统地层。野外实测了索布查J2/J1界线剖面,按2m间距采集了148件样品,室内开展了无机碳(δ13Ccarb)和有机碳(δ13Ckero)分析,目的是揭示早侏罗世末期到中侏罗世初期这一时段的古海洋演化过程。研究结果表明,曲色组沉积期古海水δ13CDIC偏正,而色哇组δ13CDIC偏负,J2/J1界线上下δ13Ccarb值显示阶步式负向偏移的特点。根据相关分馏方程计算,Toarcian期海洋浮游植物繁盛,δ13CDIC偏正,海水营养盐NO3浓度偏低,而Aalenian期海洋浮游植物衰减,δ13CDIC偏低,NO3浓度升高。沉积有机质或干酪根碳同位素δ13Ckero在J2/J1界线上下与δ13Ccarb变化趋势一致,也具有由高值逐渐偏低的特点,但δ13Ccarb和δ13Ckero变化曲线的波峰和波谷并不同步,这是因为海源和陆源有机质相对含量高低变化所致。文中根据碳同位素质量平衡方程,定量的描述了索布查界线剖面陆源和海源有机质比例的变化过程,讨论了曲色组和色哇组烃源岩在油气勘探中的意义。Abstract: Deep-water black shale strata cropped out in Balingxiang area, Shuanghu County of Northern Tibet, including Lower Jurassic Quse Formation and the Middle Jurassic Sewa Formation. The occurrence of ammonite fossil indicates a Pliensbachian-Toarcian stage of Quse Formation and a Aalenian-Bajocian stage of its overlying strata Sewa Formation, which were comfortable with the highest degree of fossil control in the Tibetan Tethys region. The Soubucha J2/J1 boundary section is measured in the field, 148 samples are collected at 2-meter intervals, and the analysis of inorganic carbon (δ13Ccarb) and organic carbon (δ13Ckero) is carried out in the laboratory, to reveal the paleo-oceanic evolution from the late Early Jurassic to the Early Middle Jurassic. It shows a positive shift of δ13Ccarb in the Quse Formation while a negative shift of δ13Ccarb in the Sewa Formation and a step negative excursion across of J2/J1 boundary. According to fractionation equation calculation, marine phytoplankton was abundant in the Toarcian stage with a positive shift of δ13CDIC and the concentration of nutrient NO3 in seawater was low, while the opposite was the case in the Aalenian stage. The sedimentary organic matter (kerogen) carbon isotope δ13Ckero is consistent with the variation trend of δ13Ccarb above and below the J2/J1 boundary, characterized by the gradual decrease from the high value while the crest and trough of the change curves of δ13Ccarb and δ13Ckero are not synchronized, owing to the relative content of organic matter variation in the marine and the terrestrial provenance. Based on the carbon isotopic mass balance equation, this study describes quantitatively the variation process of the organic matter ratio between marine and terrestrial source in the Sobucha boundary section, and discusses the significance of the source rocks of the Quse Formation and the Sewa Formation in oil and gas exploration.
-
-
Broecker W S and Maier-Reimer E, 1992. The influence of air and sea exchange on the carbon isotope distribution in the sea[J]. Global Biogeochemical Cycles, 6(3):315-320.
Haisheng YI, Guoqing X, Gaojie L I, et al., 2019. The Carbon Isotope Fluctuations across the Lower-Middle Jurassic Boundary and the Paleoclimate Changes[J]. Acta Geologica Sinica, 93(1):244-245.
Hesselbo S P and Grzegorz Pieńkowski, 2011. Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin)[J]. Earth & Planetary Science Letters, 301(1-2):365-372.
Jarvis, Ian, Gale, et al., 2006. Secular variation in Late Cretaceous carbon isotopes: a new δ13 carbonate reference curve for the Cenomanian-Campanian (99.6-70.6 Ma).[J]. Geological Magazine, 143(5):561-608.
Jasper J P and Gagosian R B, 1990. The sources and deposition of organic matter in the Late Quaternary Pigmy Basin, Gulf of Mexico[J].Geochimica et Cosmochimica Acta, 54(4):1117-1132.
Lin, Hui-g, Wang, et al., 1999.Vertical distribution of. C of dissolved inorganic carbon in the northeastern South China Sea.[J]. Deep Sea Research Part I Oceanographic Research Papers, 46:757-775.
Meyers P A, 1994. Preservation of elemental and isotopic source identification of sedimentary organic matter[J]. Chemical Geology, 114(3-4):289-302.
Ortiz J D, Mix A C, Wheeler P A, et al., 2000. Anthropogenic CO2 invasion into the northeast Pacific based on concurrent δ13CDIC and nutrient profiles from the California Current[J]. Global Biogeochemical Cycles, 14(3):917-929.
Kroopnick P M, 1985. The distribution of 13C of ΣCO2 in the world oceans[J]. Deep Sea Research Part A Oceanographic Research Papers, 32(1):57-84.
Pelejero C, Calvo E, Hoegh-Guldberg O, 2010. Paleo-perspectives on ocean acidification. Trends Ecol. Evol., 25, 332-344.
Quay P, Sonnerup R, Westby T, et al., 2003. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake[J]. Global Biogeochemical Cycles, 17(1):1004,doi:10.1029/2001GB001817.
Romanek C S, Grossman E L, Morse J W, et al., 1992. Carbon isotopic fractionation in synthetic aragonite and calcite: Effects of temperature and precipitation rate[J]. Geochimica et Cosmochimica Acta, 56(1): 419-430.
Schmittner A, Gruber N, Mix A C, et al., 2013. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean[J]. Biogeoences, 10(9):8415-8466.
Tyson R V, 1995. Bulk Geochemical Characterization and Classification of Organic Matter: Stable Carbon Isotopes (δ13C)[M].Netherlands: Sedimentary Organic Matter. Springer
Yin J, Chandler R B, 2015. Aalenian to Lower Bajocian ammonites from the Qiangtang block (North Tibet)[J]. Proceedings of the Geologists Association, 127:172-188.
Zeebe R E, Wolf-Gladrow D, 2011. CO2 in Seawater [M]. Amsterdam: Elsevier Science.
陈明,谭富文,汪正江,等,2007.西藏南羌塘坳陷色哇地区中—下侏罗统深色岩系地层的重新厘定[J].地质通报,(4):441-447.
刘世坤,吕荣敬,1988.羌塘地区海相下侏罗统新知[J].地层学杂志,12(2):133-133.
王永胜,郑春子,2007.藏北色哇地区索布查组、曲色组岩石地层、层序地层、生物地层特征及三叠系与侏罗系界线[J].地层学杂志,31(4):377-384.
文世宣,1979.西藏北部地层新资料[J].地层学杂志,3(2):150-156.
伊海生,林金辉,赵兵,等,2003.藏北羌塘地区地层新资料[J].地质论评,49(1):59-65.
伊海生,王成善,林金辉,等,2005.藏北安多地区侏罗纪菊石动物群及其古地理意义[J].地质通报,24(1):41-47.
阴家润,高金汉,王永胜,等,2006.西藏北部色哇-安多地区侏罗纪菊石类与缺氧黑色页岩相[J].古生物学报,45(3):311-331.
-
计量
- 文章访问数: 1498
- PDF下载数: 71
- 施引文献: 0