LA-ICP-MS U-Pb dating of detrital zircon from low-grade metamorphic rocks and its tectonic significances in the Bulangshan area, Menghai Country, Southern Sanjiang Tectonic Zone
-
摘要: 布朗山位于西南三江南段勐海地区,大面积出露澜沧岩群。澜沧岩群主要由低级变质作用的砂泥质岩石和少量变中基性火山岩组成,其形成时代、物质来源以及地质意义等一系列问题一直存在很多争议。本文选取该地区澜沧岩群上部层位不含变火山岩地层的浅变质岩开展碎屑锆石阴极发光图像分析和LA-ICP-MS U-Pb年代学研究,明显的环带和较高的Th/U比值表明4件浅变质岩的大部分碎屑锆石是岩浆成因。年代学结果显示,该套地层浅变质岩中的锆石记录了与罗迪尼亚、冈瓦纳超大陆拼合及原、古特提斯洋俯冲有关的岩浆作用信息(1182~1104 Ma、593~560 Ma和378 ~328 Ma),其最年轻的碎屑锆石年龄(328 Ma),暗示该套地层形成不早于早石炭世,而非以往认为的新元古代。结合其岩石组合特征,推测该套晚古生代浅变质岩系可能为泥盆-石炭系南段组。在澜沧岩群的年龄频谱特征图中,年轻的550 Ma左右峰期年龄与特提斯喜马拉雅碎屑锆石年龄峰期相同,说明其物源主要为东冈瓦纳北缘的特提斯喜马拉雅构造带,与原特提斯洋和古特提斯洋相关。
-
关键词:
- 澜沧岩群 /
- 浅变质岩系 /
- 碎屑锆石LA-ICP-MS U-Pb定年 /
- 晚古生代 /
- 勐海布朗山地区
Abstract: Bulangshan is located in the Menghai area, southern Sanjiang area of southwestern China, where Lancang Group is exposed. Lancang Group is mainly composed of sandy and muddy rocks with low-grade metamorphism and a small amount of intermediate and basic volcanic rocks. A series of issues about the Lancang Group such as the formation age, material sources and geological significance of the strata have been disputed for a long time. Detrital zircons from the low-grade metamorphic rocks without metavolcanic strata in the upper layer of the Lancang Group were carried out cathodoluminescence image analysis and LA-ICP-MS U-Pb chronology analysis. Clear oscillatory zoning and higher Th/U ratios indicate that most detrital zircons are magmatic origin. The chronological results show that the magmatism events recorded by the zircons were related to the supercontinent assembly of Rodinia and Gondwana and the subduction of the Proto- and Palaeo-Tethyan ocean (1182-1104 Ma, 593-560 Ma and 378-328 Ma), the youngest detrital zircon ages (328 Ma) suggesting that the strata didn’t form before the Early Carboniferous, rather than the Neoproterozoic. Combined with the rock assemblage characteristics, it is speculated that the Late Paleozoic low-grade metamorphic rocks may be the Carboniferous Nanduan Formation. In the detrital zircon age spectrum of the Lancang Group, the young peak age is ~550 Ma, which is similar to the Tethys Himalayas. So the materials sources of the Lancang Group maybe mainly come from the northerm margin of Eastern Gondwana, and have relationship with the Proto- and Paleo- Tethys oceans. -
-
Andersn T, 2005. Detrital zircons as traceers of sedimentary provenance: Limiting conditions from statistics and numerical simulation[J]. Chemical Geology, 216(3-4): 249-270.
Burchfiel B C, Chen Z L, 2013. Tectonics of the southeastern Tibetan plateau and its adjacent foreland[J]. Boulder, Colorado: Geological Society of American. 210: 1-164.
Cawood P A, Nemchin A A, 2000. Provenance record of a rift basin: U-Pb ages of detrital zircons from the Perth Basin, Western Australia[J]. Sedimentary Geology, 134(3-4): 209-234.
Ding H X, Zhang Z M, Dong X, et al., 2015. Cambrian ultrapotassic rhyolites from the Lhasa terrane, south Tibet: Evidence for Andean- type magmatism along the northern active margin of Gondwana[J]. Gondwana Research, 27(4): 1616-1629.
Dong M L, Dong G C, Mo X X, et al., 2013. Geochemistry, zircon U-Pb geochronlogy and Hf isotopes of granites in the Baoshan Block, Western Yunnan: Implications for Early Paleozoic evolution along the Gondwana margin[J]. Lithos, 179: 36-47.
Fan W M, Wang Y J, Zhang Y H, et al., 2015. Paleotethyan subduction process revealed from Triassic blueschists in the Lancang tectonic belt of Southwest China[J]. Tectonophysics, 662: 95-108.
Fang N Q, Liu B P, Feng Q L, et al., 1994. Late Palaeozoic and Triassic deep-water deposits and tectonic evolution of the Palaeotethys in the Changning-Menglian and Lancangjiang belts, southwestern Yunnan[J]. Journal of Southeast Asian Earth Sciences, 9(4): 363-374.
Feng Q L, 2002. Stratigraphy of volcanic rocks in the Changning-Menglian belt in Southwestern Yunnan, China[J]. Journal of Asian Earth Sciences, 20: 657-664.
Feng Q L, Chongpan C, Dietrich H, et al., 2004. Long-lived Paleotethyan pelagic remnant inside Shan-Thai block: evidence from radiolarian biostratigraphy[J]. Sciences in China (Series D: Earth Sciences), 47: 1113-1119.
Feng Q L, Yang W Q, Shen S Y, et al., 2008. The Permian seamount stratigraphic sequence in Chiang Mai, North Thailand and its tectogeographic significance[J]. Sciences in China (Series D: Earth Sciences), 51: 1768-1775.
Gehrels G E, DeCelles P G, Martin A, et al., 2003. Initiation of the Himalayan orogen as an Early Paleozonic thin-skinned thrust belt[J]. GSA Today, 13(9):4-9.
Gehrels G E, Yin A, Wang X F, 2003. Detrital-zircon geochronology of the northeastern Tibetan plateau[J]. Geological Society of America Bulletin, 115(7):881-896.
Griffin W L, Pearson N J, Belousova E,et al., 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites[J]. Geochimica et Cosmochimica Acta, 64(1): 133-147.
Hatch J R, Leventhal J S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark shale member of the Dennis Limestone, Wabaunsee Country, Kansan, USA[J]. Chemical Geology, 99: 65-82.
Hoskin P W O, Ireland T R, 2000. Rare earth element chemistry of zircon and its use as a provenance inducator[J]. Geology, 28(7): 627-630.
Hu Z C, Zhang W, Liu Y S,et al., 2015. “Wave” signal smoothing and mercury removing device for laser ablation quadrupole and multiple collector ICP-MS analysis: application to lead isotope analysis[J]. Analytical Chemistry, 87: 1152-1157.
Hu Z C, Liu Y S, Gao S,et al., 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 27(9):1391-1399.
Hu P Y, Zhai Q G, Jahn B, et al., 2015. Early Ordovician granites from the South Qiangtang terrrane, northern Tibet: Implications for the early Paleozoic tectonic evolution along the Gondwanan proto-Tethyan margin[J]. Lithos, 220/223: 318-338.
Lewan M D, 1984. Factors controlling the proportionality of vanadium to nickel in crude oils[J]. Geochimica et Cosmochimica Acta, 48: 2231-2238.
Li S Z, Zhao S J, Liu X, et al., 2018. Closure of the Proto-Tethys Ocean and Early Paleozoic amalgamation of microcontinental blocks in East Asia[J]. Earth-Science Reviews, 186: 37-75.
Li D P, Luo Z H, Chen Y L, et al., 2014. Deciphering the origin of the Tengchong block, west Yunnan: Evidence from detrital zircon U-Pb ages and Hf isotopes of Carboniferous strata[J]. Tectonophysics, 2014: 614: 66-77.
Li D P, Chen Y, Hou K J, et al., 2015. Detrital zircon record of Paleozoic and Mesozoic meta-sedimentary strata in the eastern part of the Baoshan block: Implications of their provenance and the tectonic evolution of the southeastern margin of the Tibetan plateau[J]. Lithos, 227: 194-204.
Lin J, Liu Y S, Yang Y H,et al., 2016. Calibration and correction of LA-ICP-MS and LA-ICP-MS analyses for element contents and isotopic ratios. Solid Earth Sciences, 1: 5-27.
Liu Y S, Gao S, Hu Z C,et al., 2010a. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 51: 537-571.
Liu Y S, Hu Z C, Zong K Q, et al., 2010b.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin, 55(15): 1535-1546.
Liu B B, Peng T P, Fan W F, et al., 2020. Tectonic Evolution and Paleopsoition of the Baoshan and Lincang Blocks of West Yunnan During the Paleozoic[J]. Tectonics, 36(7): 1175-1187.
Liu P J, Li X H, Chen S M, et al., 2015. New SIMS U-Pb zircon and its constraint on the beginning of the Nantuo glaciation[J]. Science Bulletin, 60(10): 958-963.
McLennan S M, 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. In: Lipin B.R.and McKay G.A. (eds.), Geochemistry and mineralogy of rare earth elements[J]. Reviewa in Mineralogy, 21: 169-200.
Metcalfe I, 2006. Paleozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context[J]. Gondwana Research, 9: 24-46.
Metcalfe I, 2013a. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66: 1-33.
Metcalfe I, 2013b. Tectonic evolution of the Malay Peninsula[J]. Journal of Asian Earth Sciences, 76: 195-213.
Metcalfe I, 2021. Multiple Tethyan ocean basins and orogenic belts in Asia[J]. Gondwana Research, 100: 87-130.
Nie X M, Feng Q L, Qian X, et al., 2015. Magmatic record of Prototethyan evolution in SWYunnan, China: Geochemical, zircon U-Pb geochronological and Lu-Hf isotopic evidence from the Huimin metavolcanic rocks in the southern Lancangjiang zone[J]. Gondwana Research, 28(2): 757-768.
Sun S S, McDonough W F,1989. Chemical and isotope syatematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders, A.D.(Ed.), Magmatism in Ocean Basins. Special Publication, Geological Society, London, 42, 313-345.
Sone M, Metcalfe I, 2008. Parallel Tethyan Sutures in mainland SE Asia: New insights for Palaeo-Tethys closureand implications for the indosinian orogeny[J]. Comptes Rendus Geoscience, 340(2-3):166-179.
Söderlund U, Patchett P J, Vervoort J D,et al., 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions[J]. Earth and Planetary Science Letters, 219(3-4): 311-324.
Wang F, Liu F L, Schert H P, et al., 2019. Paleo-Tethyan tectonic evolution of Lancangjiang metamorphic complex: Evidence from SHRIMP U-Pb zircon dating and 40Ar/39Ar isotope geochronology of blueschists in Xiaoheijiang-Xiayun area, Southeastern Tibetan Plateau[J]. Gondwana Research, 65: 142-155.
Wang X X, Zhang J J, Santosh M, et al., 2012. Andean-type orogeny in the Himalayas of south Tibet: implications for early Paleozoic tectonics along the Indian margin of Gondwana[J]. Lithos, 154: 248-262.
Wang Y J, Zhang A M, Fan W M, et al., 2010. Petrogenesis of Late Triassic post-collisinal basaltic rocks of the Lancangjiang tectonic zone, Southwest China, and tectonic implications for the evolution of the eastern Paleotethys: geochronological and geochemical constraints[J]. Lithos, 119: 553-568.
Wang Y J, Fan W M, Zhang G W, et al., 2013. Phanerozoic tectonics of the South China Block: key observations and controversies[J]. Gondwana Research, 23: 1273-1305.
Wang Q F, Deng J, Li C, et al., 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia: Constraints from detrital and inherited zircons. Gondwana Research, 26(2): 438-448.
Weis D, Kiffer B, Hanano D, et al., 2007. Hf isotope compositions of U.S. Geological Survey eference materials[J]. Geochemistry Geophysics Geosystems, 8:Q06006.
Wu G Y, 1993. Late Paleozoic Tectonic Framework and Paleotethyan Evolution in Western Yunnan, China[J]. Scientia Geologica Sinica, 2(2): 129-140.
Xing X W, Wang Y J, Cawood P A, et al., 2017. Early Paleozoic accretionary orogenesis along northern margin of Gondwana constrained by high-Mg metaigneous rocks, SW Yunnan. Internation[J]. Journal of Earth Sciences, 106(5):1469-1486.
Yang T N, Zhang H R, Liu Y X, et al., 2011. Permo-Triassic arcmagmatism in Central Tibet: evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry[J]. Chemical Geology, 284:270-282.
Zhao S W, Lai S C, Qin J F, et al., 2014. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopic compositions of the Pinghe pluton, Southwest China: implications for the evolution of the early Palaeozoic Proto-Tetyys in Southeast Asia[J].International Geology Review, 56(7): 885-904.
Zhang R Y, Cong B L, Maruyama S, et al., 1993. Metamorphism and tectonic evolution of the Lancang paired metamorphic belts, south-western China[J]. Journal of Metamorphic Geology, 11(4): 605-619.
Zhu D C, Zhao Z D, Niu Y L, et al., 2012. Cambrian bimodal volcanism in the Lhasa Terrane, southern Tibet: Record of an early Paleozoic Ande-an-type magmatic arc in the Australian pro-Tethyan margin[J]. Chemical Geology, 328: 290-308.
Zong K Q, Klemd R, Yuan Y, et al., 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB) [J]. Precambrian Research, 290: 32-48.
毕丽莎, 梁晓, 王根厚, 等, 2018. 滇西澜沧江构造带中-南段澜沧岩群变质变形期次及Ar-Ar年代学约束[J], 地球科学, 43(9): 3252-3266.
陈政宇, 2019. 昌宁-孟连带澜沧岩群时代厘定[D]. 硕士学位论文. 昆明:昆明理工大学, 17-30.
耿全如, 李文昌, 王立全, 等, 2021. 特提斯中西段古生代洋陆格局与构造演化[J]. 沉积与特提斯地质,41 (2): 297-315.
孔会磊, 董国臣, 莫宣学, 等, 2012. 滇西三江地区临沧花岗岩的岩石成因——地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 岩石学报, 28(5): 1438-1452.
雷作淇, 1982. 云南澜沧群微古植物群的发现及其意义[J]. 地层学杂志, (4): 281-285.
李文昌, 潘桂棠, 候增谦, 等, 2010. 西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M]. 北京: 地质出版社, 92-104.
李静, 孙载波, 徐桂香, 等, 2015. 滇西双江县勐库地区榴闪岩的发现与厘定[J]. 矿物学报, 35(4): 421-424.
刘本培, 冯庆来, 方念乔, 等, 1993.滇西南昌宁-孟连带和澜沧江古特提斯多岛洋构造演化[J]. 地球科学—中国地质大学学报, 18(5): 529-539.
刘本培, 冯庆来, Chonglakmani C, 等, 2002. 滇西古特提斯多岛洋的结构及其南北延伸[J]. 地学前缘, 9(3): 161-171
李兴林, 1996. 临沧复式花岗岩基的基本特征及形成环境的研究[J]. 云南地质, 8(3/4): 205-212.
李灿峰, 2018. 滇西澜沧惠民地区惠民岩组岩石地球化学特征及构造环境[D]. 硕士学位论文. 北京:中国地质大学, 31-34.
刘德利, 刘继顺, 张彩华, 等, 2008. 滇西南澜沧江结合的带北段云县花岗岩的地质特征及形成环境[J]. 岩石矿物学杂志, 27(1): 23-31.
罗君烈, 1990. 滇西特提斯造山带的演化及基本特征[J]. 云南地质, 9(4): 247-290.
潘桂棠, 徐强, 候增谦, 等, 2003.西南“三江”多岛弧造山过程、成矿系统与资源评价[M]. 北京: 地质出版社, 1-420.
潘桂棠, 王立全, 耿全如, 等, 2020. 班公湖—双湖—怒江—昌宁—孟连对接带时空结构——特提斯大洋地质及演化问题[J]. 沉积与特提斯地质, 40(3): 1-19.
彭智敏, 王国芝, 王保弟, 等, 2019. 云南邦丙澜沧岩群中发现蓝闪石榴辉岩[J]. 成都理工大学学报(自然科学版), 46(5): 639-640.
孙载波, 胡绍斌, 周坤, 等, 2019. 滇西澜沧谦迈地区榴辉岩岩石学、矿物学特征及变质演化p-T轨迹[J]. 地质通报, 38(7): 1105-1115.
孙载波, 周坤, 周家喜, 等, 2021. 三江南段勐海布朗山地区早古生代变火成岩岩石成因及其大地构造意义[J]. 大地构造与成矿学, 45(3): 958-963.
王舫, 刘福来, 冀磊, 等, 2016. 澜沧江杂岩带小黑江-上允地区蓝片岩的成因及变质演化[J]. 岩石矿物学杂志, 35(5): 804-820.
王舫, 刘福来, 冀磊, 等, 2017. 澜沧江杂岩带澜沧群浅变质岩系碎屑锆石LA-ICP-MS U-Pb 年代学及其构造意义[J]. 岩石学报, 30(9): 2725-2738.
王保弟, 王立全, 王冬兵, 等, 2018. 三江昌宁-孟连带原-古特提斯构造演化[J]. 地球科学, 43(8), 2527-2550.
王慧宁, 刘福来, 冀磊, 等, 2019. 昌宁-孟连杂岩带澜沧岩群的岩石学、地球化学和变质演化及其对古特提斯构造演化的启示[J]. 岩石学报, 35(6): 1773-1799.
卫管一, 冯国荣, 罗再文, 等, 1984. 滇西澜沧群、崇山群地层层序及其火山作用和变质作用[J]. 成都理工大学学报(自然科学版)(2): 12-20.
徐云飞, 丛峰, 刘军平, 等, 2018. 滇西澜沧岩群碎屑锆石U-Pb定年及其地质意义[J]. 沉积与特提斯地质, 38(2): 103-112.
云南省地质矿产局, 1990. 云南省区域地质志[M], 北京, 地质出版社
赵靖, 钟大赉, 王毅, 1994. 滇西澜沧变质带变质作用和变形作用的关系[J]. 岩石学报, 10(1): 27-40.
赵枫, 李龚健, 张鹏飞, 等, 2018. 西南三江临沧花岗岩基成因与构造启示:元素地球化学、锆石U-Pb年代学及Hf同位素约束[J]. 岩石学报, 34(5): 1397-1412.
曾文涛, 刘桂春, 冯庆来, 等, 2017. 临沧地体亲缘性及南段组物源——来自泥盆纪-石炭纪南段组碎屑锆石U-Pb年龄的证据[J]. 地质通报, 36(7): 1175-1187.
翟明国, 从柏林, 乔广生, 等, 1990.中国滇西南造山带变质岩的Sm-Nd和Rb-Sr同位素年代学[J]. 岩石学报,6(4): 1-11.
周维全, 林文信, 1982. 澜沧江变质带南段蓝闪石片岩特征[J]. 中国区域地质志(2): 76-85.
赵靖, 钟大赉, 王毅, 1994. 滇西澜沧变质带变质作用和变形作用的关系[J]. 岩石学报, 10(1): 27-40.
钟大赉, 1998. 川滇西部古特提斯造山带[M]. 北京: 科学出版社, 1-231.
-
计量
- 文章访问数: 1387
- PDF下载数: 41
- 施引文献: 0