东秦岭杨斜金矿区石英闪长玢岩锆石U-Pb年代学、地球化学特征及地质意义

葛战林, 高永宝, 郑艳荣, 郝迪, 董阳阳. 2022. 东秦岭杨斜金矿区石英闪长玢岩锆石U-Pb年代学、地球化学特征及地质意义. 沉积与特提斯地质, 42(4): 598-612. doi: 10.19826/j.cnki.1009-3850.2022.04006
引用本文: 葛战林, 高永宝, 郑艳荣, 郝迪, 董阳阳. 2022. 东秦岭杨斜金矿区石英闪长玢岩锆石U-Pb年代学、地球化学特征及地质意义. 沉积与特提斯地质, 42(4): 598-612. doi: 10.19826/j.cnki.1009-3850.2022.04006
GE Zhanlin, GAO Yongbao, ZHENG Yanrong, HAO Di, DONG Yangyang. 2022. Zircon U-Pb isotopic geochronology, geochemistry and geological significance of the quartz diorite porphyrite in Yangxie gold ore district, East Qinling. Sedimentary Geology and Tethyan Geology, 42(4): 598-612. doi: 10.19826/j.cnki.1009-3850.2022.04006
Citation: GE Zhanlin, GAO Yongbao, ZHENG Yanrong, HAO Di, DONG Yangyang. 2022. Zircon U-Pb isotopic geochronology, geochemistry and geological significance of the quartz diorite porphyrite in Yangxie gold ore district, East Qinling. Sedimentary Geology and Tethyan Geology, 42(4): 598-612. doi: 10.19826/j.cnki.1009-3850.2022.04006

东秦岭杨斜金矿区石英闪长玢岩锆石U-Pb年代学、地球化学特征及地质意义

  • 基金项目:

    中国地质调查局地质调查项目(DD20191013)

详细信息
    作者简介: 葛战林(1992-),男,博士研究生,工程师,主要从事矿床学及矿床地球化学研究。E-mail: gezhanlin@163.com
    通讯作者: 高永宝(1982-),男,博士,正高级工程师,主要从事矿床学及矿床地球化学研究。E-mail: gaoyongbao2006@126.com
  • 中图分类号: P618.51;P588.1;P597.3

Zircon U-Pb isotopic geochronology, geochemistry and geological significance of the quartz diorite porphyrite in Yangxie gold ore district, East Qinling

More Information
    Corresponding author: GAO Yongbao
  • 杨斜中型金矿床是东秦岭杨斜-丰北河地区典型的石英脉型金矿床,成矿与区内石英闪长玢岩密切相关,具中高温蚀变特征及矿物组成。LA-ICP-MS锆石U-Pb测年结果表明,石英闪长玢岩锆石206Pb/238U加权平均年龄为149.5±2.7 Ma,谐和年龄为149.5±2.1 Ma,属晚侏罗世。岩石地球化学研究显示,石英闪长玢岩具有高SiO2(65.53%~65.76%)、高Al2O3(15.65%~15.87%)、富碱(N2O+K2O=8.07%~8.30%)及贫MgO(1.37%~1.40%)特征,属于高钾钙碱性准铝质系列岩石;相对富集Rb、Ba、K、Pb、Sr等大离子亲石元素和LREE,亏损Nb、Ta、Ti等高场强元素和HREE;其高Sr、高Sr/Y、低Y和低Yb值及正Eu异常等特征参数,与典型埃达克质岩一致,岩浆应起源于加厚下地壳的部分熔融。综合研究认为,杨斜金矿属岩浆期后热液型金矿床,成岩成矿时代一致,形成于秦岭造山带晚侏罗世-早白垩世陆内俯冲向伸展转换的构造环境。
  • 加载中
  • Castillo P R, Janney P E, Solidum R U, 1999. Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting[J]. Contributions to Mineralogy and Petrology, 134(1): 33-51.

    Chen Y J, Li C, Zhang J, et al., 2000. Sr and O isotopic characteristics of porphyries in the Qinling molybdenum deposit belt and their implication to genetic mechanism and type[J]. Science in China (Series D), 43(Supp.): 82-94.

    Chung S L, Liu D Y, Ji J Q, et al., 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet[J]. Geology, 31(11): 1021-1024.

    Defant M J, Drummond M S, 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature, 347(6294): 662-665.

    Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J], Gondwana Research, 29(1): 1-40.

    Drummond M S, Defant M J, 1990. A model for Trondhjemite-Tonalite-Dacite Genesis and crustal growth via slab melting: Archean to modern comparisons[J]. Journal of Geophysical Research, 95(B13): 21503-21521.

    Gao S, Rudnick R L, Yuan H L, et al., 2004. Recycling lower continental crust in the North China craton[J]. Nature,432(7019): 892-897.

    Guo F, Nakamuru E, Fan W M, et al., 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China[J]. Journal of Petrology, 48(4): 661-692.

    Han Y G, Li X H, Zhang S H, et al., 2007. Single grain Rb-Sr dating of euhedral and cataclastic pyrite form the Qiyugou gold deposit in western Henan, central China[J]. Chinese Science Bulletin, 52(13): 1820-1826.

    Harris N B W, Pearce J A, Tindle A G, 1986. Geochemical characteristics of collision-zone magmatism[C]// Coward M P, Ries A C. Collision Tectonics. Geological Society, Landon, Special Publication, 67-81.

    Hoskin P W O, Ireland T R, 2000. Rare earth element chemistry of zircon and its use as a provenance indicator[J]. Geology, 28(7): 627-630.

    Hoskin P W O, Schaltegger U, 2003. The composition of zircon and igneous and metamorphic petrogenesis[J]. Reviews in Mineralogy and Geochemistry, 53(1): 27-62.

    Hou Z Q, Gao Y F, Qu X M, et al., 2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet[J]. Earth and Planetary Science Letters, 220(1-2): 139-155.

    Hu F Y, Liu S W, Ducea M N, et al., 2017. The geochemical evolution of the granitoid rocks in the South Qinling Belt: Insights from the Dongjiangkou and Zhashui intrusions, central China[J]. Lithos, 278-281: 195-214.

    Li J W, Li Z K, Zhou M F, et al., 2012. The Early Cretaceous Yangzhaiyu lode gold deposit, North China Craton: A link between craton reactivation and gold veining[J]. Economic Geology, 107(1): 43-79.

    Li Q Z, Chen Y J, Zhong Z Q, et al., 2002. Ar-Ar dating on the metallogenesis of the Dongchuang gold deposit in the Xiaoqinling area[J]. Acta Geologica Sinica, 76(4): 488-493.

    Liu Y S, Hu Z C, Gao S, et al., 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 257(1-2): 34-43.

    Macpherson C G, Dreher S T, Thirlwall M F, 2006. Adakites without slab melting: High pressure differentiation of island arc magma, Mindanao, the Philippines[J]. Earth and Planetary Science Letters, 243(3): 581-593.

    Maniar P D, Piccoli P M, 1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin, 101(5): 635-643.

    Mao J W, Goldfarb R J, Zhang Z W, et al., 2002. Gold deposits in the Xiaoqinling-Xiong'ershan region, Qinling Mountains, central China[J]. Mineralium Deposita, 37(3-4): 306-325.

    Mao J W, Xie G Q, Pirajno F, et al., 2010. Late Jurassic-Early Cretaceous granitoid magmatism in Eastern Qinling, central-eastern China: SHRIMP zircon U-Pb ages and tectonic implications[J]. Australian Journal of Earth Sciences, 57(1): 51-78.

    Martin H, 1999. Adakitic magmas: Modern analogues of Archaean granitoids[J]. Lithos, 46(3): 411-429.

    Meng Q R, Zhang G W, 2000. Geologic framework and tectonic evolution of the Qinling orogen, central China[J]. Tectonophysics, 323(3): 183-196.

    Middlemost E A K, 1985. Magmas and Magmatic rocks[M]. London: Longman, 1-266.

    Middlemost E A K, 1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 37(3-4): 215-224.

    Ou Q, Wang Q, Wyman D A, et al., 2017. Eocene adakitic porphyries in the central-northern Qiangtang Block, central Tibet: Partial melting of thickened lower crust and implications for initial surface uplifting of the plateau[J]. Journal of Geophysical Research: Solid Earth, 122(2): 1025-1053.

    Pearce J A, 1996. Source and settings of granitic rocks[J]. Episodes, 19(4): 120-125.

    Peccerillo A, Taylor S R, 1976. Geochemistry of Eocene calc-alkaline volcanic rocks form the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 58(1), 63-81.

    Qi N, Wang P, Yu J, et al., 2019. Geochronology and origin of the Qi189 porphyry gold deposit in Qiyugou orefield, Qinling orogen, China[J]. Ore Geology Reviews, 114: 103121.

    Qin J F, Lai S C, Wang J, et al., 2007. High-Mg# adakitic tonalite from the Xichahe area, south Qinling Orogenic Belt (central China): Petrogenesis and geological implications[J]. International Geology Review, 49(12): 1145-1158.

    Streck M J, Leeman W P, Chesley J, 2007. High-magnesian andesite form Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt[J]. Geology, 35(4): 351-354.

    Sun S S, McDonough W E, 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[C]// Saunders A D, Norry M J. Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42: 313-345.

    Tang K F, Li J W, Selby D, et al., 2013. Geology, mineralization, and geochronology of the Qianhe gold deposit, Xiong'ershan area, southern North China Craton[J]. Mineralium Deposita, 48(6): 729-747.

    Thieblemont D, Stein G, Lescuyer J L, 1997. Epithermal and porphyry deposits: The adakite connection[J]. Earth & Planetary Sciences, 325(2): 103-109.

    Tian Y F, Ye H S, Mao J W, et al., 2019. Geochronology and geochemistry of the Dianfang gold deposit, western Henan Province, central China: Implications for mineral exploration[J]. Ore Geology Reviews, 111: 102967.

    Wang Q, Li Z X, Chung S L, et al., 2011. Late Triassic high-Mg andesite/dacite suites from northern Hohxil, North Tibet: Geochronology, geochemical characteristics, petrogenetic processes and tectonic implications[J].Lithos, 126(1-2): 54-67.

    Wang Q, McDermott F, Xu J F, et al., 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting[J]. Geology, 33(6): 465-468.

    Wang Q, Wyman D A, Xu J F, et al., 2008. Eocene melting of subducting continental crust and early uplifting of central Tibet: Evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites[J]. Earth and Planetary Science Letters, 272(1-2): 158-171.

    Wang Q, Xu J F, Jian P, et al., 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: Implications for genesis of porphyry copper mineralization[J]. Journal of Petrology, 47(1): 119-144.

    Wu F Y, Lin J Q, Wilde S A, et al., 2005. Nature and significance of the Early Cretaceous giant igneous event in eastern China[J]. Earth and Planetary Science Letters, 233(1-2): 103-119.

    Xu J F, Shinjo R, Defant M J, et al., 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust?[J]. Geology, 30(12): 111-1114.

    Yan Z, Wang Z Q, Yan Q R, et al., 2006. Devonian sedimentary environments and provenance of the Qinling orogen: Constrains on Late Paleozoic southward accretionary tectonics of the North China Craton[J]. International Geology Review, 48(7): 585-618.

    Zhang G W, Meng Q R, Lai S C, 1995. Tectonics and structure of Qinling orogenic belt[J]. Science in China (Series B), 38(11): 1379-1394.

    Zhang Z Y, Wang Y H, Liu J J, et al., 2020. Geology, fluid inclusions, and H-O-S-Pb isotopes of the Chigou porphyry Cu deposit in Southern Qinling, central China: Implication for ore genesis[J]. Ore Geology Reviews, 126: 103723.

    Zhang Z Y, Wang Y H, Zhang F F, et al., 2021. Origin of high Ba-Sr granitoids at Chigou in central China and implications for Cu mineralization: Insights from whole-rock geochemistry, zircon U-Pb dating, Lu-Hf isotopes and molybdenite Re-Os systematics[J]. Ore Geology Reviews, 138: 104416.

    陈雷,王宗起,闫臻,等,2014.秦岭山阳-柞水矿集区150~140 Ma斑岩-矽卡岩型Cu-Mo-Fe(Au)矿床成矿作用研究[J].岩石学报,30(2):415-436.

    陈衍景,2010.秦岭印支期构造背景、岩浆活动及成矿作用[J].中国地质,37(4):854-865.

    陈毓川,王平安,秦克令,等,1994.秦岭地区主要金属矿床成矿系列的划分及区域成矿规律探讨[J].矿床地质,13(4):289-298.

    代鸿章,王登红,刘丽君,等,2019.南秦岭镇安核桃坪钨铍矿床成矿时代及成矿模式探讨[J].地质学报,93(6):1342-1358.

    代军治,高菊生,钱壮志,等,2019.小秦岭镰子沟金矿床辉钼矿Re-Os年龄和锆石U-Pb年龄及其地质意义[J].地质通报,38(8):1369-1377.

    代军治,鱼康平,王瑞廷,等,2015.南秦岭宁陕地区新铺钼矿地质特征、辉钼矿Re-Os年龄及地质意义[J].岩石学报,31(1):189-199.

    丁坤,2020.南秦岭柞-山矿集区典型金矿床成矿作用与成矿动力学背景[D].长安大学,博士学位论文.

    葛战林,郑艳荣,郝迪,等,2020.东秦岭杨斜—丰北河成矿带杨屋场钨(金)矿床地质特征及成因探讨[J].西北地质,53(3):140-152.

    弓虎军,朱赖民,孙博亚,等,2009.南秦岭沙河湾、曹坪和柞水岩体锆石U-Pb年龄、Hf同位素特征及其地质意义[J].岩石学报,25(2):248-264.

    郭波,朱赖民,李犇,等,2009.华北陆块南缘华山和合峪花岗岩岩体锆石U-Pb年龄、Hf同位素组成与成岩动力学背景[J].岩石学报,25(2):265-281.

    黄典豪,吴澄宇,杜安道,等,1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义[J].矿床地质,13(3):221-230.

    姜子琦,王强,Wyman D A,等,2011.西藏冈底斯南缘冲木达约30 Ma埃达克质侵入岩的成因:向北俯冲的印度陆壳的熔融?[J].地球化学,40(2):126-146.

    李厚民,叶会寿,毛景文,等,2007.小秦岭金(钼)矿床辉钼矿铼-锇定年及其地质意义[J].矿床地质,26(4):417-424.

    李诺,陈衍景,张辉,等,2007.东秦岭斑岩钼矿带的地质特征和成矿构造背景[J].地学前缘,14(5):186-198.

    李双庆,杨晓勇,屈文俊,等,2010.南秦岭宁陕地区月河坪夕卡岩型钼矿Re-Os年龄和矿床学特征[J].岩石学报,26(5):1479-1486.

    李永峰,毛景文,胡华斌,等,2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景[J].矿床地质,24(3):292-304.

    刘军锋,孙勇,孙卫东,2009.秦岭拉鸡庙镁铁质岩体锆石LA-ICP-MS年代学研究[J].岩石学报,25(2):320-330.

    刘凯,王瑞廷,樊忠平,等,2019.秦岭造山带柞水-山阳矿集区夏家店金矿床成矿时代及其地质意义[J].矿床地质,38(6):1278-1296.

    刘云华,李真,周肃,等,2016.南秦岭东沟-金龙山金矿地质特征、成矿时代及其地质意义[J].地学前缘,23(4):81-93.

    卢欣祥,李明立,王卫,等,2008.秦岭造山带的印支运动及印支期成矿作用[J].矿床地质,27(6):762-773.

    马承,葛战林,郑艳荣,等,2021.陕西商洛杨斜金矿床地质特征与控矿因素探讨[J].西北地质,54(2):137-148.

    毛景文,谢桂青,张作衡,等,2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,21(1):169-188.

    牛宝贵,和政军,任纪舜,等,2006.秦岭地区陡岭-小茅岭隆起带西段几个岩体的Shrimp锆石U-Pb测年及其地质意义[J].地质论评,52(6):826-835.

    强山峰,毕诗健,邓晓东,等,2013.豫西小秦岭地区秦南金矿床热液独居石U-Th-Pb定年及其地质意义[J].地球科学—中国地质大学学报,38(1):43-56.

    陕西省地质调查院,2017.中国区域地质志·陕西志[M].北京:地质出版社.

    王强,许继峰,赵振华,等,2007.中国埃达克岩或埃达克质岩及相关金属成矿作用[J].矿物岩石地球化学通报,26(4):336-349.

    王晓霞,王涛,齐秋菊,等,2011.秦岭晚中生代花岗岩时空分布、成因演变及构造意义[J].岩石学报,27(6):1573-1593.

    王义天,毛景文,卢欣祥,等,2002.河南小秦岭金矿区Q875脉中深部矿化蚀变岩的40Ar-39Ar年龄及其意义[J].科学通报,47(18):1427-1431.

    王义天,叶会寿,叶安旺,等,2010.小秦岭文峪和娘娘山花岗岩体锆石SHRIMP U-Pb年龄及其意义[J].地质科学,45(1):167-180.

    吴发富,王宗起,闫臻,等,2014.秦岭山阳-柞水地区燕山期中酸性侵入岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J].岩石学报,30(2):451-471.

    谢桂青,任涛,李剑斌,等,2012.陕西柞水盆地池沟铜钼矿区含矿岩体的锆石U-Pb年龄和岩石成因[J].岩石学报,28(1):15-26.

    徐启东,钟增球,周汉文,等,1998.豫西小秦岭金矿区的一组40Ar-39Ar定年数据[J].地质论评,44(3):323-327.

    杨力,陈福坤,杨一增,等,2010.丹凤地区秦岭岩群片麻岩锆石U-Pb年龄:北秦岭地体中-新元古代岩浆作用和早古生代变质作用的记录[J].岩石学报,26(5):1589-1603.

    姚书振,丁振举,周宗桂,等,2002.秦岭造山带金属成矿系统[J].地球科学―中国地质大学学报,27(5):599-604.

    余晓红,2017.北秦岭杨斜金矿床成矿作用特征及矿床成因研究[D].武汉:中国地质大学(武汉),硕士学位论文.

    张国伟,郭安林,董云鹏,等,2019.关于秦岭造山带[J].地质力学学报,25(5):746-768.

    张国伟,张本仁,袁学诚,等,2001.秦岭造山带与大陆动力学[M].北京:科学出版社.

    张旗,王焰,钱青,等,2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义[J].岩石学报,17(2):236-244.

    赵东宏,杨忠堂,李宗会,等,2019.秦岭成矿带成矿地质背景及优势矿产成矿规律[M].北京:科学出版社.

    朱赖民,郑俊,熊潇,等,2019.南秦岭柞水-山阳矿集区园子街岩体岩石地球化学及成矿潜力探讨[J].地学前缘,26(5):189-205.

  • 加载中
计量
  • 文章访问数:  743
  • PDF下载数:  76
  • 施引文献:  0
出版历程
收稿日期:  2021-09-08
修回日期:  2021-11-26

目录