湖相致密储层有利层段的沉积与湖平面变化的耦合关系及其控制因素:以柴西尕斯地区上干柴沟组下段为例

郑永盛, 唐闻强, 伊海生, 裴梓薇, 杨梅, 邢浩婷, 杨芸, 汪素风. 2023. 湖相致密储层有利层段的沉积与湖平面变化的耦合关系及其控制因素:以柴西尕斯地区上干柴沟组下段为例. 沉积与特提斯地质, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011
引用本文: 郑永盛, 唐闻强, 伊海生, 裴梓薇, 杨梅, 邢浩婷, 杨芸, 汪素风. 2023. 湖相致密储层有利层段的沉积与湖平面变化的耦合关系及其控制因素:以柴西尕斯地区上干柴沟组下段为例. 沉积与特提斯地质, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011
ZHENG Yongsheng, TANG Wenqiang, YI Haisheng, PEI Ziwei, YANG Mei, XING Haoting, YANG Yun, WANG Sufeng. 2023. Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China. Sedimentary Geology and Tethyan Geology, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011
Citation: ZHENG Yongsheng, TANG Wenqiang, YI Haisheng, PEI Ziwei, YANG Mei, XING Haoting, YANG Yun, WANG Sufeng. 2023. Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China. Sedimentary Geology and Tethyan Geology, 43(3): 475-488. doi: 10.19826/j.cnki.1009-3850.2022.04011

湖相致密储层有利层段的沉积与湖平面变化的耦合关系及其控制因素:以柴西尕斯地区上干柴沟组下段为例

  • 基金项目: 国家自然科学基金项目(41572089)
详细信息
    作者简介: 郑永盛(1997—),男,硕士,主要从事古生物与古环境研究工作。E-mail: zys19970915@163.com
    通讯作者: 伊海生(1959—),男,教授,博士生导师,主要从事沉积学研究与教学工作。E-mail: yhs@cdut.edu.cn
  • 中图分类号: P618.13

Coupling relationship between sedimentation of favorable intervals and lake level change and its controlling factors in lacustrine tight reservoir: A case study of the Lower Shangganchaigou Formation in the Gasi area, western Qaidam Basin, China

More Information
  • 探讨有利层段的沉积与湖平面变化之间的关系,可以对湖相致密储层的勘探开发部署提供一定参考。以柴达木盆地西部尕斯地区上干柴沟组下段为例,利用自然伽马(GR)曲线资料,进行Fischer图解和铀含量(U)-有机碳(TOC)回归拟合法,重建渐新世沉积时期湖平面变化过程,结合磁化率资料,讨论了湖平面变化的气候控制作用。结果表明:(1)尕斯地区上干柴沟组下段泥质含量和TOC含量变化趋势一致,均反映其在沉积过程中经历了两次湖退和湖进过程,有利于烃源岩和储层的形成;(2)湖平面上升期形成的高水位沉积体系,对应于致密砂岩类储层中优质烃源岩的富集层段,能有效形成源-储共生配置;(3)渐新世湖平面变化受西风条件下的气候的控制,西风带来的水汽,形成相对湿润的气候条件,引起湖平面的上升,有利于烃源岩的形成,且与有利层段的沉积呈现耦合关系。

  • 加载中
  • 图 3  柴达木盆地西部上干柴沟组沉积体系图(a,据王艳清等, 2014修改)和连井剖面及相应地震剖面示意图(b)

    Figure 3. 

    图 1  柴达木盆地构造单元(据付锁堂等, 2013修订)

    Figure 1. 

    图 2  柴达木盆地西部尕斯地区地层(a)和上干柴沟组测井曲线(b)

    Figure 2. 

    图 4  Y1井上干柴沟组下段的Fischer图解、TOC和泥质含量对比(20%加权平均值用于去趋势)

    Figure 4. 

    图 5  Y9井上干柴沟组下段Fischer图解(a)、磁化率(MS)趋势(b)与泥质含量(c)对比

    Figure 5. 

    图 6  Y2井岩心段Fischer图解、TOC、生烃潜力(S1+S2)、氢指数(HI)对比

    Figure 6. 

    图 7  全球氧同位素含量变化(a;据高军平,2009修改)与柴达木盆地地层划分和西风带效应降水模式图(b)

    Figure 7. 

  • [1]

    Bao J, Wang Y D, Song C H, et al. , 2017. Cenozoic sediment flux in the Qaidam Basin, northern Tibetan Plateau, and implications with regional tectonics and climate[J]. Global & Planetary Change, 155: 56-69.

    [2]

    Bao X J, Zhang, S H, Jiang G Q, et al. , 2018. Cyclostratigraphic constraints on the duration of the Datangpo Formation and the onset age of the Nantuo (Marinoan) glaciation in South China[J]. Earth and Planetary Science Letters, 483: 52–63. doi: 10.1016/j.jpgl.2017.12.001

    [3]

    Bellanca A, Calvo J P, Censi P, et al. , 1992. Recognition of lake-level changes in Miocene lacustrine units, Madrid Basin, Spain. Evidence from facies analysis, isotope geochemistry andclay mineralogy[J]. Sedimentary Geology, 76(3-4): 135-153. doi: 10.1016/0037-0738(92)90080-B

    [4]

    Bian Q, Zhang D W, Yu X J, et al. , 2019. Transpressional salt tectonic system in western Qaidam Basin, Western China[J]. AAPG Bulletin, 103(3): 547–568. doi: 10.1306/08161817119

    [5]

    Bookman R, Enzel Y, Agnon A, et al. , 2004. Late Holocene lake levels of the Dead Sea[J]. Geological Society of America Bulletin, 116(5-6): 555-571.

    [6]

    Bosboom R E, DupontNivet G, Houben A J P, et al. , 2011. Late Eocene sea retreat from the Tarim Basin (west China) and concomitant Asian paleoenvironmental change[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 299(3-4): 385–398.

    [7]

    曹怀仁, 2017. 松辽盆地烃源岩形成环境与页岩油地质评价研究[D]. 中国科学院大学.

    Cao H, 2017. The paleo-environment of source rock formation and geological evaluation of shale oil in the Songliao Basin[D]. University of Chinese Academy of Sciences(in Chinese with English abstact).

    [8]

    陈云, 伊海生, 陈璐洁, 等, 2021. 青藏高原古近系牛堡组三段天文周期旋回分析及古湖平面演化研究: 以尼玛盆地尼1井为例[J/OL]. 沉积与特提斯地质: 1-12

    Chen Y, Yi H S, Chen L J, et al., 2021. Astronomical cycles analysis and paleolake level evolution characteristics of Paleogene upper Niubao Formation: A case study from the Ni-1 well in Tibetan Plateau[J/OL]. Sedimentary Geology and Tethyan Geology: 1-12.

    [9]

    Dow W G, 1974. Application of oil-correlation and source-rock data to exploration in Williston Basin[J]. AAPG Bulletin, 58(7): 1253-1262.

    [10]

    丁文龙, 王燮培, 李衍达, 等, 2004. 柴西地区尕斯断陷同生逆断裂构造特征与形成演化[J]. 石油与天然气地质, 6: 634-638 doi: 10.11743/ogg20040607

    Ding W L, Wang X P, Li Y D. , et al. , 2004. Structural features and evolution of contemporaneous reversed faults in Gas faulted depression in western Qaidam basin[J]. Oil & Gas Geology, 6: 634-638. doi: 10.11743/ogg20040607

    [11]

    董国栋, 张琴, 严婷, 等, 2013. 致密油勘探研究现状[J]. 石油地质与工程, 27(5): 1-4+145 doi: 10.3969/j.issn.1673-8217.2013.05.001

    Dong G D, Zhang Q, Yan T, et al. , 2013. Current situation of researching tight oil exploration[J]. Petroleum Geology and Engineering, 27(5): 1-4+145. doi: 10.3969/j.issn.1673-8217.2013.05.001

    [12]

    杜金虎, 何海清, 杨涛, 等, 2014. 中国致密油勘探进展及面临的挑战[J]. 中国石油勘探, 19(1): 1672-7703

    Du J H, He H Q, Yang T, et al. , 2014. Progress in China's Tight Oil Exploration and Challenges[J]. China Petroleum Exploration, 19(1): 1672-7703.

    [13]

    Fang X M, Yan M D, Vander Voo R, et al. , 2005. Late Cenozoic deformation and uplift of the NE Tibetan Plateau: Evidence from high-resolution magnetos tratigraphy of the Guide Basin, Qinghai Province, China[J]. Geological Society of America Bulletin, 117(9-10): 1208-1225.

    [14]

    冯子辉, 方伟, 王雪, 等, 2009. 松辽盆地海侵制约油页岩形成的微体古生物和分子化石证据[J]. 中国科学, 39(10): 1375-1386

    Feng Z H, Fang W, Wang X, et al. , 2009. Microfossils and molecular records in oil shales of the Songliao Basin and implications for paleo-depositional environment[J]. Science in China Press, 39(10): 1375-1386.

    [15]

    冯子辉, 霍秋立, 王雪, 等, 2015. 青山口组一段烃源岩有机地球化学特征及古沉积环境[J]. 大庆石油地质与开发, 34(4): 1-7 doi: 10.3969/J.ISSN.1000-3754.2015.04.001

    Feng Z H, Huo Q L, Wang X, et al. , 2015. Organic Geochemical Characteristics and Paleosedimentary Environments of The Source Rocks in Member 1 of Qingshankou Formation[J]. Petroleum Geology & Oilfield Development in Daqing, 34(4): 1-7. doi: 10.3969/J.ISSN.1000-3754.2015.04.001

    [16]

    Fischer A G, 1964. The Lofer cyclothem of the Alpine Triassic In[C]//Symposium on cyclic sedimentation. Kansas State Geology Survey Bulletin. 169(1): 107-149.

    [17]

    Frierson D M W, Lu J, Chen G, et al. , 2007. Width of the Hadley cell in simple and comprehensive general circulation models[J]. Geophysical Research Letters, 34 (18): L18804. doi: 10.1029/2007GL031115

    [18]

    付锁堂, 张道伟, 薛建勤, 等, 2013. 柴达木盆地致密油形成的地质条件及勘探潜力分析[J]. 沉积学报, 31(4): 672-682 doi: 10.14027/j.cnki.cjxb.2013.04.011

    Fu S T, Zhang D W, Xue J Q, et al. , 2013. Exploration Potential and Geological Conditions of Tight Oil in the Qaidam Basin[J]. Acta Sedimentologica Sinica, 31(4): 672-682. doi: 10.14027/j.cnki.cjxb.2013.04.011

    [19]

    付锁堂, 马达德, 陈琰, 等, 2016. 柴达木盆地油气勘探新进展[J]. 石油学报, 37(S1): 1-10 doi: 10.7623/syxb2016S1001

    Fu S T, Ma D D, Chen Y, et al. , 2016. New advance of petroleum and gas exploration in Qaidam Basin[J]. Acta Petrolei Sinica, 37(S1): 1-10. doi: 10.7623/syxb2016S1001

    [20]

    高军平, 2009.柴西西岔沟新近系磁组构特征对环境变化的响应[J].沉积学报,27(1):128-136.

    Gao J P, 2009. Response of magnetic mabric of Xichagou Section in Late Tertiary to mlimate mhange,Western Qaidam Basin[J]. Acta Sedimentologica Sinica, 27(1): 128-136.

    [21]

    Goncalves F T T, 2002. Organic and isotope geochemistry of the Early Cretaceous rift sequence in the Camamu Basin, Brazil: paleolimnological inferences and source rock models[J]. Organic Geochemistry, 33(1): 67–80. doi: 10.1016/S0146-6380(01)00128-0

    [22]

    龚大兴, 周家云, 陈科贵, 等, 2014. 海相碳酸盐台地含钾层段旋回地层学响应和识别——以川中广安地区三叠系为例[J]. 高校地质学报, 20(2): 230-238 doi: 10.3969/j.issn.1006-7493.2014.02.007

    Gong D X, Zhou J Y, Chen K G, et al. , 2014. Identification of the Potassium-rich Member in Carbonate Platform and Its Response to the Gamma Ray Well Logging from the Perspective of Cyclostratigraphy: A Case Study in Triassic of Guangan Area, in the Central Sichuan Basin[J]. Geological Journal of China Universities, 20(2): 230-238. doi: 10.3969/j.issn.1006-7493.2014.02.007

    [23]

    郭华粘, 2020. 柴达木盆地西部尕斯地区上干柴沟组下勘探开发方案[R]. 青海: 中国石油青海油田公司勘探开发研究院.

    Guo H Z, 2020. Exploration and development program for the Lower Shangganchaigou Formation in the Gasi area of the Western Qaidam Basin[R]. Exploration and Development Research Institute of Qinghai Oilfield Company, PetroChina.

    [24]

    韩刚, 张文婧, 黄清华, 等, 2012. 松辽盆地晚白垩世青山口组缺氧事件层的地质地球化学特征[J]. 现代地质, 26(4): 741-746 doi: 10.3969/j.issn.1000-8527.2012.04.015

    Han G, Zhang W J, Huang Q H, et al. , 2012. Geological and Geochemical Characteristics of Anoxic Event Bed in the Qingshankou Formation of Late Cretaceous in Songliao Basin[J]. Geoscience, 26(4): 741-746. doi: 10.3969/j.issn.1000-8527.2012.04.015

    [25]

    Hannon G E, Gaillard M J, 1997. The plant-macrofossil record of past lake-level changes[J]. Journal of Paleolimnology, 18(1): 15-28. doi: 10.1023/A:1007958511729

    [26]

    Harrison S P, Digerfeldt G, 1993. European lakes as palaeohydrological and palaeoclimatic indicators[J]. Quaternary Science Reviews, 12(4): 233-248. doi: 10.1016/0277-3791(93)90079-2

    [27]

    侯启军, 冯志强, 冯子辉, 2009. 松辽盆地陆相石油地质学[M]. 北京: 石油工业出版社, 97-99

    Hou Q J, Feng Z Q, Feng Z H, 2009. Continental petroleum geology of Songliao Basin[M]. Beijing: Petroleum Industry Press, 97-99.

    [28]

    何胡军, 2003. 浅析湖平面变化与地球化学特征的关系——以潜江凹陷为例[J]. 新疆石油学院学报, 15(4): 18-21

    He H J, 2003. Study on The Character of Geochemistry in Sequence Stratigrap HY Units of Saline Basin on Qianjiang Group in Qianjiang Depression[J]. Journal of Xinjiang Petroleum Institute, 15(4): 18-21.

    [29]

    胡守云, 王苏民, AppelE, 等, 1998. 呼伦湖湖泊沉积物磁化率变化的环境磁学机制[J]. 中国科学(D辑: 地球科学), 28(4): 334-339

    Hu S Y, Wang S M, Appel E, et al. , 1998. Environmental magnetic mechanism of magnetic susceptibility variation of lake sediments in Hulun Lake[J]. Science in China Press, 28(4): 334-339.

    [30]

    黄第藩, 张大江, 王培荣, 等, 2003. 中国未成熟石油成因机制和成藏条件[M]. 北京: 石油工业出版社.

    Huang D F, Zhang D J, Wang P R, et al. , 2003. Genetic mechanism and accumulation conditions of immature petroleum in China[M]. Beijing: Petroleum Industry Press.

    [31]

    贾承造, 邹才能, 李建忠, 等, 2012. 中国致密油评价标准、主要类型、基本特征及资源前景[J]. 石油学报, 33(3): 343-350

    Jia C Z, Zou C N, Li J Z, et al. , 2012. Assessment criteria, main types, basic features and resource prospects of the tight oil in China. Acta Petrolei Sinica, 33(3): 343–350.

    [32]

    金强, 查明, 2000. 柴达木盆地西部第三系蒸发岩与生油岩共生沉积作用研究[J]. 地质科学, 35(4): 465-473 doi: 10.3321/j.issn:0563-5020.2000.04.010

    Jin Q, Zha M, 2000. Co-Sedimentation of Tertiary Evaporites and Oil Source Rocks in the Western Qaidam Basin[J]. Scientia Geologica Sinica, 35(4): 465-473. doi: 10.3321/j.issn:0563-5020.2000.04.010

    [33]

    Johanson C M, Fu Q, 2009. Hadley cell widening: model simulations versus observations[J]. Journal of Climate, 22: 2713–2725. doi: 10.1175/2008JCLI2620.1

    [34]

    Kelts, K, 1988. Environments of deposition of lacustrine petroleum source rocks: an introduction[J]. Geological Society, London, Special Publications, 40: 3–26. doi: 10.1144/GSL.SP.1988.040.01.02

    [35]

    Kong X X, Jiang Z X, Han C, et al. , 2018. The tight oil of lacustrine carbonate-rich rocks in the eocene shulu sag: implications for lithofacies and reservoir characteristics[J]. Journal of Petroleum Science and Engineering, 175: 547-559.

    [36]

    Kukla G J, 1987. Loess stratigraphy in center China[J]. Quaternary Science Review, 6: 191-219. doi: 10.1016/0277-3791(87)90004-7

    [37]

    雷群, 王红岩, 赵群, 等, 2008. 国内外非常规油气资源勘探开发现状及建议[J]. 天然气工业, 28(12): 7-10+134 doi: 10.3787/j.issn.1000-0976.2008.12.003

    Lei Q, Wang H Y, Zhao Q, et al. , 2008. Status Analysis and Advices on Exploration and Development of Unconventional Hydrocarbon Resources[J]. Natural Gas Industry, 28(12): 7-10+134. doi: 10.3787/j.issn.1000-0976.2008.12.003

    [38]

    Leng M J, Marshall J D, 2004. Palaeoclimate interpretation of stable isotope data from lake sediment archives[J]. Quaternary Science Reviews, 23(7): 811-831.

    [39]

    李俊武, 2016. 柴西南地区古—新近系致密油储层特征及有利探区预测[D]. 成都: 成都理工大学.

    Li J W, 2016. The characteristics of tight oil reservoir and favorable exploration Area Prediction of Paleogene and Neogene in the Southwestern area, Qaidam Basin[D]. Chengdu: Chengdu University of Technology.

    [40]

    李启来, 2017. 西藏尼玛地区古近系牛堡组古湖平面变化的沉积地球化学记录[D]. 成都: 成都理工大学.

    Li Q L, 2017. Sedimentary geochemistry and lake-level changes from the Paleogene Niubao Formation of Nima area, Tibet [D]. Chengdu: Chengdu University of Technology.

    [41]

    李禹成, 2019. 白垩纪松辽盆地青山口组高频古湖平面变化及其控制因素[D]. 北京: 中国地质大学.

    Li Y C, 2019. High Frequency Paleolake Level Change and Its Controlling Factors of Qingshankou Formation in Cretaceous Songliao Basin [D]. Beijing: China University of Geosciences.

    [42]

    Li F J, Yang Y. C, Li J W, et al. , 2014. Lacustrine tempestite and its geological significance in the Cenozoic study of the Qaidam Basin[J]. Journal of Asian Earth Sciences, 92: 157–167. doi: 10.1016/j.jseaes.2014.06.020

    [43]

    林森虎, 邹才能, 袁选俊, 等, 2011. 美国致密油开发现状及启示[J]. 岩性油气藏, 23(4): 25-30+64 doi: 10.3969/j.issn.1673-8926.2011.04.005

    Lin S H, Zou C N, Yuan X J, et al. , 2011. Status quo of tight oil exploitation in the United States and its implication[J]. Lithologic Reservoirs, 23(4): 25-30+64. doi: 10.3969/j.issn.1673-8926.2011.04.005

    [44]

    林孝先, 侯中健, 2014. 松辽盆地中部扶余油层相对湖平面变化定量研究[J]. 地层学杂志, 38(2): 170-180 doi: 10.19839/j.cnki.dcxzz.2014.02.005

    Lin X X, Hou Z J, 2014. A Quantitative Analysis Research on Relative Lacustrine Level Changes in the Lower Cretaceous Fuyu Reservoir in the Songliao Basin[J]. Journal of Stratigraphy, 38(2): 170-180. doi: 10.19839/j.cnki.dcxzz.2014.02.005

    [45]

    Liu M J, Xiong C, 2021. Diagenesis and reservoir quality of deep–lacustrine sandy–debris–flow tight sandstones in Upper Triassic Yanchang Formation, Ordos Basin, China: Implications for reservoir heterogeneity and hydrocarbon accumulation[J]. Journal of Petroleum Science and Engineering, 202: 1–16.

    [46]

    Liu W G, Li X Z, An Z S, et al. , 2013. Total organic carbon isotopes: A novel proxy of lake level from Lake Qinghai in the Qinghai–Tibet Plateau, China[J]. Chemical Geology, 347: 153-160. doi: 10.1016/j.chemgeo.2013.04.009

    [47]

    刘顺宇, 赵荣, 2019. 柴达木盆地油气资源研究现状及问题[J]. 能源与环保, 41(2): 92-97+101

    Liu S Y, Zhao R, 2019. Research status and problems of oil and gas resources in Qaidam Basin[J]. China Energy and Environmental Protection, 41(2): 92-97+101.

    [48]

    刘占国, 朱超, 李森明, 等, 2017. 柴达木盆地西部地区致密油地质特征及勘探领域[J]. 石油勘探与开发, 44(2): 196-204 doi: 10.11698/PED.2017.02.03

    Liu Z G, Zhu C, Li S M, et al. , 2017. Geological features and exploration fields of tight oil in the Cenozoic of western Qaidam Basin, NW China[J]. Petroleum Exploration and Development, 44(2): 196-204. doi: 10.11698/PED.2017.02.03

    [49]

    马达德, 陈琰, 夏晓敏, 等, 2019. 英东油田成藏条件及勘探开发关键技术[J]. 石油学报, 40(1): 115-130 doi: 10.7623/syxb201901010

    Ma D D, Chen Y, Xia X M, et al. , 2019. Reservoir formation conditions and key exploration &development technoloiges in Yingdong oilfield, Qaidam Basin[J]. Acta Petrolei Sinica, 40(1): 115-130. doi: 10.7623/syxb201901010

    [50]

    马洪, 李建忠, 杨涛, 等, 2014. 中国陆相湖盆致密油成藏主控因素综述[J]. 石油实验地质, 36(6): 668-677 doi: 10.11781/sysydz201406668

    Ma H, Li J Z, Yang T, et al. , 2014. Main controlling factors for tight oil accumulation in continental lacustrine basins in China[J]. Petroleum Geology & Experiment, 36(6): 668-677. doi: 10.11781/sysydz201406668

    [51]

    梅冥相, 马永生, 周洪瑞, 等, 2001. 雾迷山旋回层的费希尔图解及其在定义前寒武纪三级海平面变化中的应用[J]. 地球学报, 22(5): 429-436 doi: 10.3321/j.issn:1006-3021.2001.05.010

    Mei M X, Ma Y S, Zhou H R, et al. , 2001. The Fischer Plots of Wumishan Cyclothems as Records of Third-Order Sea Level Changes in Precambrian[J]. Acta Geosicientia Sinica, 22(5): 429-436. doi: 10.3321/j.issn:1006-3021.2001.05.010

    [52]

    Meyers P A, 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 34(2): 261–289. doi: 10.1016/S0146-6380(02)00168-7

    [53]

    Molnar P, England P, Martinod J, 1993. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon[J]. Reviews of Geophysics, 31: 357-397. doi: 10.1029/93RG02030

    [54]

    Patience A J, Lallier–Verges E, Alberic P, et al. , 1996. Relationships between organo–mineral supply and early diagenesis in the lacustrine environment: A study of surficial sediments from the Lac du Bouchet (Haute Loire, France) [J]. Quaternary Science Reviews, 15(2-3): 213–221. doi: 10.1016/0277-3791(95)00024-0

    [55]

    庞正炼, 邹才能, 陶士振, 等, 2012. 中国致密油形成分布与资源潜力评价[J]. 中国工程科学, 14(7): 60-67 doi: 10.3969/j.issn.1009-1742.2012.07.009

    Pang Z L, Zou C N, Tao S Z, et al. , 2012. Formation, distribution and resource evaluation of tight oil in China[J]. Engineering Sciences, 14(7): 60-67. doi: 10.3969/j.issn.1009-1742.2012.07.009

    [56]

    庞正炼, 陶士振, 张琴, 等, 2018a.四川盆地中部侏罗系大安寨段储集层微观结构及油气意义[J].石油勘探与开发,45(1):62-72.

    Pang Z L, Tao S Z, Zhang Q, et al., 2018a.Reservoir micro structure of Da’anzhai Member of Jurassic and its petroleum significance in Central Sichuan Basin, SW China. Petroleum Exploration and Development. 2018, 45(1): 62-72.

    [57]

    庞正炼, 陶士振, 张琴, 等, 2018b.四川盆地侏罗系致密油二次运移机制与富集主控因素[J].石油学报,39(11):1211-1222.

    Pang Z L, Tao S Z, Zhang Q, et al., Secondary migration mechanism and accumulation controlling factors of Jurassic tight oil in Sichuan Basin[J]. Acta Petrolei Sinica, 2018, 39(11): 1211-1222.

    [58]

    Rashid F, Glover P W J, Lorinczi P, et al. , 2015. Porosity and permeability of tight carbonate reservoir rocks in the north of Iraq[J]. Journal of Petroleum Science and Engineering, 133: 147–161. doi: 10.1016/j.petrol.2015.05.009

    [59]

    Read B, Goldhammer R K, 1988. Use of Fischer Plots to define third order sealevel curves in peritidal cyclic carbonates, Early Ordovieian, Appalaehians[J]. Geology, 16(10): 895–899. doi: 10.1130/0091-7613(1988)016<0895:UOFPTD>2.3.CO;2

    [60]

    石金华, 杨成, 李仕远, 等, 2016. 扎哈泉储层致密史与致密油聚集关系探讨[J]. 特种油气藏, 23(4): 42-45+153 doi: 10.3969/j.issn.1006-6535.2016.04.009

    Shi J H, Yang C, Li S Y, et al. , 2016. Relationship between Reservoir Densification History and Tight Oil Accumulation in Zhahaquan[J]. Special Oil & Gas Reservoirs, 23(4): 42-45+153. doi: 10.3969/j.issn.1006-6535.2016.04.009

    [61]

    Shi J Y, Jin Z J, Liu Q Y, et al. , 2018. Terrestrial sedimentary responses to astronomically forced climate changes during the Early Paleogene in the Bohai Bay Basin, eastern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 502: 1–12.

    [62]

    施之新, 1997. 江汉平原47号钻孔中的化石硅藻及其在古环境分析上的意义[J]. 植物学报, 39(1): 68-76

    Shi Z X, 1997. Fossil Diatoms in NO. 47 Borehole of Jianghan Plain and Their Significance to Paleoenvironmental Analysis[J]. Acta Botanica Sinica, 39(1): 68-76.

    [63]

    孙晶, 薛林福, 李双林, 等, 2012. 渤海湾盆地孔南地区孔二段湖盆性质研究[J]. 地球科学进展, 27(S1): 408-410

    Sun J, Xue L F, Li S L, et al. , 2012. Study on lake basin properties of the second Member of Kongdian Formation in Kongnan area, Bohai Bay Basin[J]. Advances in Earth Science, 27 (S1): 408-410.

    [64]

    Sun Z M, Yang Z Y, Pei J L, et al, 2005. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China: Implications for tectonic uplift and block rotation in northern Tibetan plateau[J]. Earth and Planetary Science Letters, 237(3-4): 635–646. doi: 10.1016/j.jpgl.2005.07.007

    [65]

    Talbot M R, Livingstone D A, 1989. Hydrogen index and carbon isotopes of lacustrine organic matter as lake level indicators[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 70(1-3): 121–137.

    [66]

    Tang W Q, Yi F, Chen X D, et al, 2021. Abrupt aridification in the upper eocene of the western Qaidam Basin, northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 577: 110515.

    [67]

    Thompson R, 1975. Magnetic susceptibility of lake sediments[J]. Limnology and Oceanograpy, 20(5): 687-698. doi: 10.4319/lo.1975.20.5.0687

    [68]

    王亚东, 张涛, 迟云平, 等, 2011. 柴达木盆地西部地区新生代演化特征与青藏高原隆升[J]. 地学前缘, 18(3): 141-148

    Wang Y D, Zhang T, Chi Y P, et al. , 2011. Cenozoic uplift of the Tibetan Plateau: Evidence from tectonic-sedimentary evolution of the Western Qaidam Basin[J]. Earth Science Frontiers, 18(3): 141-148.

    [69]

    王亚青, 2009. 湖平面变化对王58地区浊积扇形成与演化的控制作用研究[J]. 西北地质, 42(1): 51-56 doi: 10.3969/j.issn.1009-6248.2009.01.004

    Wang Y Q, 2009. Effect of Lake Level Fluctuations on Turbidite Fan Development in Wang 58 Block[J]. Northwestern Geology, 42(1): 51-56. doi: 10.3969/j.issn.1009-6248.2009.01.004

    [70]

    王艳清, 刘云田, 黄革萍, 等, 2014. 柴达木盆地西部地区古近-新近系沉积体系与油气分布[M]. 北京: 石油工业出版社.

    Wang Y Q, Liu Y T, Huang G P, et al. , 2014. Paleogene-neogene sedimentary system and oil and gas distribution in western Qaidam Basin[M]. Beijing: Petroleum Industry Press(in Chinese).

    [71]

    Wang J Y, Fang X M, Appel E, et al. , 2012. Pliocene–Pleistocene Climate Change At the NE Tibetan Plateau Deduced From Lithofacies Variation In the Drill Core SG-1, Western Qaidam Basin, China[J]. Journal of Sedimentary Research, 82(12): 933-952. doi: 10.2110/jsr.2012.76

    [72]

    Wang X F, Wang C S, Feng Z H, et al. , 2009. Filling types of terrestrial basin and their control on the formation of hydrocarbon source rocks: Taking Songliao Basin as an example[J]. Earth Science Frontiers, 16(5): 192–200.

    [73]

    Williams J A, 1974. Characterization of oil types in Williston Basin[J]. AAPG Bulletin, 58(7): 1243-1252.

    [74]

    Wu M H, Zhuang G S, Hou M Q, et al. , 2021. Expanded lacustrine sedimentation in the Qaidam Basin on the northern Tibetan Plateau: Manifestation of climatic wetting during the Oligocene icehouse[J]. Earth and Planetary Science Letters, 565: 116935. doi: 10.1016/j.jpgl.2021.116935

    [75]

    武向峰, 2010. 柴达木盆地西部上、下干柴沟组湖平面变化程式及控制因素[D]. 成都: 成都理工大学.

    Wu X F, 2010. Lake level fluctuation pattern and controlling factors of Shangganchaigou Formation and Xiaganchaigou Formation , Western Qaidam Basin[D]. Chengdu: Chengdu University of Technology.

    [76]

    吴伟, 林畅松, 刘景彦, 等, 2011. 利用上超点法重建渤海湾盆地辽中凹陷渐新世湖平面变化[J]. 沉积学报, 29(6): 1115-1121 doi: 10.14027/j.cnki.cjxb.2011.06.008

    Wu W, Lin C S, Liu J Y, et al. , 2011. Reconstruction of Oligocene Lake Level Change through Onlap Points: A case from Liaozhong Depression, Bohai Bay Basin[J]. Acta Sedimentologica Sinica, 29(6): 1115-1121. doi: 10.14027/j.cnki.cjxb.2011.06.008

    [77]

    吴伟, 林畅松, 周心怀, 等, 2012. 辽东湾古近纪东营期古气候演化及其对湖平面变化的影响[J]. 中国石油大学学报(自然科学版), 36(1): 33-39+46 doi: 10.3969/j.issn.1673-5005.2012.01.006

    Wu W, Lin C S, Zhou X H, et al. , 2012. Paleoclimate evolution and its influence on lake level changes of Paleogene Dongying epoch in Liaodong Bay, East China[J]. Journal of China University of Petroleum, 36(1): 33-39+46. doi: 10.3969/j.issn.1673-5005.2012.01.006

    [78]

    席党鹏, 李罡, 万晓樵, 等, 2009. 松辽盆地东南区姚家组—嫩江组一段地层特征与湖泊演变[J]. 古生物学报, 48(3): 556-568 doi: 10.3969/j.issn.0001-6616.2009.03.024

    Xi D P, Li G, Wan X Q, et al. , 2009. Stratigraphic characteristics and lake evolution of yaojia Formation - Nenjiang Formation 1 member in southeast Songliao Basin[J]. Acta Palaeontologica Sinica, 48(3): 556-568. doi: 10.3969/j.issn.0001-6616.2009.03.024

    [79]

    Xi D P, Wan X Q, Jansa L, et al., 2011. Late Cretaceous paleoenvironment and lake level fluctuation in the Songliao Basin, northeastern China. Island Arc, 20(1): 6-22.

    [80]

    Xiong Y, Tan X C, Wu K Y, et al. , 2021. Petrogenesis of the Eocene lacustrine evaporites in the western Qaidam Basin: Implications for regional tectonic and climate changes[J]. Sedimentary Geology, 416: 105867. doi: 10.1016/j.sedgeo.2021.105867

    [81]

    徐程, 2018. 中国中西部致密油-烃源岩的地质与地球化学特征[D]. 西安: 长江大学.

    Xu C, 2018. Geological and geochemical characteristics of tight oil-source rocks in central and western China[D]. Xian: Yangtze University.

    [82]

    徐延康, 2014. 松辽盆地嫩江组下部高频湖平面变化及其与有机质丰度的关系[D]. 北京: 中国地质大学(北京).

    Xu Y K, 2014. High Frequency Lake Level Fluctuation and its Correspondence with the Abundance of Organic Matter in Lower Nenjiang Formation of Songliao Basin, NE China[D]. Beijing: China University of Geosciences(Beijing).

    [83]

    Xu Z J, Liu L F, Wang T Q, et al. , 2017. Analysis of the charging process of the lacustrine tight oil reservoir in the Triassic Chang 6 Member in the southwest Ordos Basin, China[J]. Canadian Journal of Earth Sciences, 54(12): 1-66.

    [84]

    杨大明, 2017. 松辽盆地嫩一段及嫩二段高频湖平面变化重建及其受控因素[D]. 北京: 中国地质大学.

    Yang D M, 2017. High-freqency lake-level fluctuation in numbers 1 and 2 of Nenjiang Formation in Songliao Basin and its controlling factors[D]. Beijing: China University of Geosciences(Beijing).

    [85]

    Yang D M, Huang Y J, Guo W, et al. , 2018. Late Santonian–early Campanian lake–level fluctuations in the Songliao Basin, NE China and their relationship to coeval eustatic changes[J]. Cretaceous Research, 92: 138–149. doi: 10.1016/j.cretres.2018.07.008

    [86]

    杨藩, 马志强, 许同春, 等, 1992. 柴达木盆地第三纪磁性地层柱[J]. 石油学报, 13(2): 97-101 doi: 10.7623/syxb199202016

    Yang F, Ma Z Q, Xu T C, et al. , 1992. A Tertiary Paleomagnetic Stratigraphic Profile in Qaidam Basin[J]. Acta Petrolei Sinica, 13(2): 97-101. doi: 10.7623/syxb199202016

    [87]

    Ye C C, Yang Y B, Fang X M, et al. , 2020. Paleolake salinity evolution in the Qaidam Basin (NE Tibetan Plateau) between ~42 and 29 Ma: Links to global cooling and Paratethys Sea incursions[J]. Sedimentary geology, 409: 105778. doi: 10.1016/j.sedgeo.2020.105778

    [88]

    伊海生, 张小青, 朱迎堂, 2006. 青藏高原中部湖泊岩心记录的第四纪湖平面变化及气候意义[J]. 地学前缘, 13(5): 300-307 doi: 10.3321/j.issn:1005-2321.2006.05.003

    Yi H S, Zhang X Q, Zhu Y T, 2006. Lake level change recorded by core of the Quaternary lacustrine sediment in the central Tibetan plateau and its climatic implications[J]. Earth Science Frontiers, 13(5): 300-307. doi: 10.3321/j.issn:1005-2321.2006.05.003

    [89]

    伊海生, 时志强, 朱迎堂, 等, 2009. 利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J]. 湖泊科学, 21(1): 77-83 doi: 10.3321/j.issn:1003-5427.2009.01.010

    Yi H S, Shi Z Q, Zhu Y T, et al. , 2009. Reconstruction of paleo-salinity and lake-level fluctuation history by using boron concentration in lacustrine mudstones[J]. Journal of Lake Sciences, 21(1): 77-83. doi: 10.3321/j.issn:1003-5427.2009.01.010

    [90]

    伊海生, 2011. 测井曲线旋回分析在碳酸盐岩层序地层研究中的应用[J]. 古地理学报, 13(4): 456-466 doi: 10.7605/gdlxb.2011.04.009

    Yi H S, 2011. Application of well log cycle analysis in studies of sequence stratigraphy of carbonate rocks[J]. Journal of Palaeogeography, 13(4): 456-466. doi: 10.7605/gdlxb.2011.04.009

    [91]

    Yin Q, Yi H S, Xia G Q, et al. , 2015. Accommodation space and Milankovitch orbit cycle sequence of the Paleogene stratigraphic frames in Lunpola basin based on the spectrum analysis of the logging curve[J]. Progress in Geophysics, 30(3): 1288–1297.

    [92]

    袁亚娟, 吕宝凤, 刘见宝, 等, 2010. 柴达木盆地断裂发育特征及其动力学机制探讨[J]. 西南石油大学学报(自然科学版), 32(6): 46-52+186

    Yuan Y J, Lv B F, Liu J B, et al. , 2010. The Kinematic Characteristics of the Fault System of Qaidam Basin and its Dynamic Mechanism[J]. JournalofSouthwestPetroleum University(Science& Teehn~~logyEdition), 32(6): 46-52+186.

    [93]

    Zachos J C, Dickens G R, Zeebe R E, 2008. An early Cenozoic perspective on greenhouse warming and carbon–cycle dynamics[J]. Nature, 451: 279–283. doi: 10.1038/nature06588

    [94]

    Zhang T, Zhang C M, Fan T L, et al. , 2019. Cyclostratigraphy of Lower Triassic terrestrial successions in the Junggar Basin, northwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 539: 109493.

    [95]

    张道伟, 马达德, 陈琰, 等, 2019. 柴达木盆地油气地质研究新进展及勘探成果[J]. 新疆石油地质, 40(5): 505-512

    Zhang D W, Ma D D, Chen Y, et al. , 2019. Research Progress on Oil and Gas Geology and Exploration Practice in Qaidam Basin[J]. Xinjiang Petroleum Geology, 40(5): 505-512.

    [96]

    张葳, 2013. 川中东北部早中侏罗世古湖泊演化与致密油储层形成[D]. 成都: 成都理工大学.

    Zhang W, 2013. The evolution of the ancient lake and tight oil reservoirsformation of the early and middle Jurassic in the NE part of Central Sichuan Basin[D]. Chengdu: Chengdu University of Technology.

    [97]

    张平中, 王先彬, 陈践发, 等, 1995. 湖相有机质的氢指数及碳同位素组成——湖面波动评价的指标——以RH孔为例[J]. 科学通报, 40(18): 1682-1685 doi: 10.3321/j.issn:0023-074X.1995.18.015

    Zhang P Z, Wang X B, Chen J F, et al. , 1995. Hydrogen index and carbon isotopic composition of lacustrine organic matter -- indicators for evaluation of lake surface fluctuation -- Taking RH pore as an example[J]. Chinese Science Bulletin, 40(18): 1682-1685. doi: 10.3321/j.issn:0023-074X.1995.18.015

    [98]

    张伟林, 2006. 柴达木盆地新生代高精度磁性地层与青藏高原隆升[D]. 兰州: 兰州大学.

    Zhang W L, 2006. Cenozoic Uplift of theTibetan Plateau: Evidence from High Resolution Magnetostratigraphy of the Qaidam Basin[D]. Lanzhou: Lanzhou University.

    [99]

    郑敬贵, 赖维成, 王军, 等, 2014. 渤海海域辽中南洼渐新统湖平面变化及其油气勘探意义[J]. 地质科技情报, 33(4): 117-122

    Zheng J G, Lai W C, Wang J, et al. , 2014. Lake-Level Changes of Oligocene of Liaozhong Southern Sag in Bohai Sea Region and Its Significance in Petroleum Exploration[J]. Geological Science and Technology Information, 33(4): 117-122.

    [100]

    郑茜, 张小莉, 王国民, 等, 2015. 扎哈泉地区上干柴沟组致密油烃源岩测井评价方法[J]. 岩性油气藏, 27(3): 115-121 doi: 10.3969/j.issn.1673-8926.2015.03.018

    Zheng Q, Zhang X L, Wang G M, et al. , 2015. Logging evaluation methods of source rocks of tight oil of Upper Ganchaigou Formation in Zhahaquan area[J]. Lithologic Reservoirs, 27(3): 115-121. doi: 10.3969/j.issn.1673-8926.2015.03.018

    [101]

    邹才能, 董大忠, 王社教, 等, 2010. 中国页岩气形成机理, 地质特征及资源潜力[J]. 石油勘探与开发, 37(6): 641-653 doi: 10.1016/S1876-3804(11)60001-3

    Zou C N, Dong D Z, Wang S J, et al. , 2010. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 37(6): 641-653. doi: 10.1016/S1876-3804(11)60001-3

    [102]

    邹才能, 朱如凯, 吴松涛, 等, 2012. 常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例[J]. 石油学报, 33(2): 173-187 doi: 10.7623/syxb201202001

    Zou C N, Zhu R K, Wu S T, et al. , 2012. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulations: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 33(2): 173-187. doi: 10.7623/syxb201202001

    [103]

    邹才能, 张国生, 杨智, 等, 2013. 非常规油气概念、特征、潜力及技术——兼论非常规油气地质学[J]. 石油勘探与开发, 40(4): 385-399 doi: 10.11698/PED.2013.04.01

    Zou C N, Zhang G S, Yang Z, et al. , 2013. Geological concepts, characteristics, resource potential and key techniques of unconventional hydrocarbon: On unconventional petroleum geology[J]. Petroleum Exploration and Development, 40(4): 385-399. doi: 10.11698/PED.2013.04.01

    [104]

    邹才能, 李君, 杨慎, 等, 2018. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发, 45(4): 604-618 doi: 10.1016/S1876-3804(18)30066-1

    Zou C N, Li J, Yang S, et al. , 2018. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 45(4): 604-618. doi: 10.1016/S1876-3804(18)30066-1

  • 加载中

(7)

计量
  • 文章访问数:  1376
  • PDF下载数:  184
  • 施引文献:  0
出版历程
收稿日期:  2021-12-08
修回日期:  2022-03-23
刊出日期:  2023-09-30

目录