-
摘要: 青藏高原是新生代以来由于印度板块与欧亚板块碰撞而迅速隆起,平均海拔超过4000 m的高原,是研究碰撞过程和形成演化的理想窗口。有关青藏高原的碰撞过程及印度板块岩石圈北缘界线,至今仍然存在较大争议,这可能主要是由于不同研究方法获得认识的差异性和局限性所导致。基于此,本文利用前人深部结构资料,讨论了高原岩石圈的壳幔构造及物质组成等,并从新的地质视角讨论了班怒带的大地构造属性。通过梳理前人的深部结构资料,认为青藏高原的壳幔岩石圈结构较为复杂,如高原内部岩石圈厚度显著大于周缘地区,中下地壳及上地幔广泛分布着低速高导层,这些特殊的地质地球物理结构是印亚板块碰撞的结果。此外,本文进一步对比分析了班怒带的地质与地球物理结构,揭示该构造带两侧存在显著的差异,认为其是印度岩石圈的北缘,这对于认识青藏高原的形成演化具有重要的意义。Abstract: The Tibet Plateau, a result of the collision between the Indian plate and the Eurasian plate since the Cenozoic, with a more than 4000 m average elevation, is an ideal site to study the collision processes. The collision processes of the Tibet Plateau and the northern boundary of the Indian plate lithosphere are still controversial, which may be caused by the differences and limitations of different research methods. The crust-mantle structure and material composition of the plateau lithosphere are discussed in this paper, and the tectonic attributes of the Bangonghu-Nujiang tectonic belt are discussed from a new geological perspective. Based on the previous deep structure data, it is concluded that the crust-mantle lithosphere structure of the Tibet Plateau is relatively complex, for example, the lithosphere thickness inner the Plateau is significantly thicker than that in the surrounding areas, and the low velocity and high conductivity layers are widely distributed in the middle and lower crust and upper mantle. These special geological and geophysical structures are the result of the Indian-Asian plate collision. In addition, the geological and geophysical structures of the Bangonghu-Nujiang tectonic belt are compared and analyzed in this paper. It is concluded that there are significant differences between the two sides of the Bangonghu-Nujiang belt, indicating that it is the northern margin of the Indian lithosphere.
-
Key words:
- Tibetan Plateau /
- collision /
- lithosphere structure /
- Bangonghu-Nujiang tectonic belt
-
-
Argand E,1924.La tectonique de l’ Asie[C]//Proceedings of the 13th International Geological Congress,7:170-372.
Bai D H,Unsworth M J,Meju M A,et al.,2010.Crustal deformation of the eastern Tibetan plateau revealed by magnetotelluric imaging[J].Nature Geoscience (3):358-362.
Beaumont C,Jamieson R A,Nguyen M H,et al.,2004.Crustal channel flows:1.Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen[J].Journal of Geophysical Research:Solid Earth,109:B06406.
Brown L D,Zhao W J,Nelson D K,et al.,1996.Bright spots,structure,and magmatism in southern Tibet from INDEPTH seismic reflection profiling[J].Science,274:1688-1690.
Chen L,Booker J R,Jones A G,et al.,1996.Electrically conductivity crust in Southern Tibet from INDEPTH magnetotelluric surveying[J].Science,274:1694-1696.
Dewey J F,Burke K,1973.Tibetan,Variscan,and Precambrian Basement Reactivation:Products of Continental Collision[J].The Journal of Geology,81(6):683-692.
Dong H,Wei W,Jin S,et al.,2016.Extensional extrusion:Insights into south-eastward expansion of Tibetan Plateau from magnetotelluric array data[J].Earth&Planetary Science Letters,454:78-85.
Gansser A,1966.The Indian Ocean and the Himalayas—A Geological Interpretation[J].Eclogae Geologicae Helvetiae,59(2):831-848.
Hsu K J,Pan G,Sengor A M C,et al.,1995.Tectonic evolution of the Tibetan Plateau:A working hypothesis based on the archipelago model of orogenesis[J].International Geology Review,37:473-508.
Liang C,Song X,2006.A low velocity belt beneath northern and eastern Tibetan Plateau from Pn tomography[J].Geophysical Research Letters,33(22):22306-1-22306-5.
Mattauer M,1986.Intracontinental subduction,crust-mantle decollement and crustal-stacking wedge in the Himalayas and other collision belts[J].Geological Society of London Special Publications,19(1),37-50.
McNamara D E,W R Walter,T J Owens,et al.,1997.Upper mantle velocity structure beneath the Tibetan plateau from Pn travel time tomography[J].Journal of Geophysical Research:Solid Earth,102(B1):493-505.
Molnar P H,Tapponnier P,1975.Cenozoic tectonics of Asia:effects of a continental collision[J].Nature,189(4201),419-426.
Nelson K D,Zhao W J,Brown L D,et al.,1996.Partially molten middle crust beneath southern Tibet:synthesis of project INDEPTH results[J].Science,274:1684-1688.
Owens T J,Zandt G,1997.Implications of crustal property variations for models of Tibetan plateau evolution[J].Nature,387:37-43.
Pan G T,Wang L Q,Li R S,et al.,2012.Tectonic evolution of Qinghai-Tibet plateau[J].Journal of Asian Earth Science,53:3-14.
Royden L H,King R W,Chen Z,et al.,1997.Surface Deformation and Lower Crustal Flow in Eastern Tibet[J].Science,276(5313):788-790.
Royden L H,Burchfiel B C,van der Hilst R D,2008.The Geological Evolution of the Tibetan Plateau[J].Science,321:1054-1058.
Tapponnier P,Xu Z Q,Roger F,et al.,2001.Oblique stepwise rise and growth of the Tibet plateau[J].Science,294(5547):1671-1677.
Willet S D,Beaumont C,1994.Subduction of Asian lithosphere mantle beneath Tibet inferred from models of continental collision[J].Nature,369(6482):642-645.
Unsworth M J,Jones A G,Wei W,et al.,2005.Crustal rheology of the Himalaya and Southern Tibet inferred from magnetotelluric data[J].Nature,438:78-81.
Weaver B L,Tarney J,1984.Empirical approach to estimating the composition of the continental crust[J].Nature,310(5978):575-577.
Wei W B,Unsworth M,Jones A,et al.,2001.Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J].Science,292:716-718.
Zhang L T,2017.A review of recent developments in the study of regional lithospheric electrical structure of the Asian continent[J].Surveys in Geophysics,38:1043-1096.
Zhao J M,Yuan X H,Liu H B,et al.,2010.The boundary between the Indian and Asian tectonic plates below Tibet[J].Proceedings of the National Academy of Sciences of the United States of America,107(25):11229-11233.
Zhao L F,Xie X B,He J K,et al.,2013.Crustal flow pattern beneath the Tibetan Plateau constrained by regional Lg-wave Q tomography[J].Earth and Planetary Science Letters,383:113-122.
毕思文,李继亮,1997.地球系统科学与可持续发展(Ⅳ)统一构造理论中的青藏高原[J].系统工程理论与实践,17(9),83-92.
常承法,1992.特提斯及青藏碰撞造山带的演化特点:大陆岩石圈构造与资源[M].北京:海洋出版社,1-18.
崔作舟,尹周勋,高恩源,等,1990.青藏高原地完结构构造及其与地震的关系[J].中国地质科学院院报(2):215-226.
高锐,孟令顺,李莉,1990.青藏高原亚东—格尔木条带布格重力异常数字图象处理与地壳现代构造[J].地球学报(2):1-11.
高锐,肖序常,刘训,等,2001.新疆地学断面深地震反射剖面揭示的西昆仑—塔里木结合带岩石圈细结构[J].地球学报,22(6):547-552.
黄汲清,陈炳蔚,1987.中国及邻区特提斯海的演化[M].北京:地质出版社,1-78.
刘增乾,徐宪,潘桂棠,等,1990.青藏高原大地构造与形成演化[M].北京:地质出版社,1-174.
莫宣学,赵志丹邓晋福,等,2003.印度—亚洲大陆主碰撞过程的火山作用响应[J].岩石学报,10(3):135-148.
莫宣学,潘桂棠,2006.从特提斯到青藏高原形成:构造—岩浆事件的约束[J].地学前缘,31(6):43-51.
莫宣学,2020.从岩浆岩看青藏高原的生长演化[J].地球科学,45(7):2245-2257.
潘桂棠,王培生,徐耀荣,等,1990.青藏高原新生代构造演化[M].北京:地质出版社,1-190.
潘桂棠,陈智梁,李兴振,等,1997.东特提斯地质构造形成演化[M].北京:地质出版社,1-218.
潘桂棠,王立全,李兴振,等,2001.青藏高原区域构造格局及其多岛弧盆系的空间配置[J].沉积与特提斯地质,21(3):1-26.
潘桂棠,刘宇平,郑来林,等,2013.青藏高原碰撞构造与效应[M].广州:广东科技出版社,1-466.
潘桂棠,王立全,耿全如,等,2020.班公湖—双湖—怒江—昌宁—孟连对接带时空结构—特提斯大洋地质及演化问题[J].沉积与特提斯地质,40(3):1-19.
潘裕生,孔祥儒,1998.青藏高原岩石圈结构演化和动力学[M].广州:广东科技出版社,1-428.
沈显杰,张文仁,管烨,等,1989.纵贯青藏高原的亚东-柴达木热流大断面[J].科学通报,34(17):1329-1330.
沈显杰,张文仁,1990.西藏中部地热区的钻孔热流测量[J].地质科学(4):376-384.
滕吉文,1994.康滇构造带岩石圈物理与动力学[M].北京:地质出版社.
腾吉文,张中杰,胡家富,等,1996.青藏高原整体隆升与地壳短缩增厚的物理-力学机制(上、下)[J].高校地质学报(2):121-133.
王德发,王乃东,张永军,等,2013.青藏高原及邻区航磁系列图及说明书(1:3000000)[M].地质出版社,1-71.
王式,卢德源,黄立言,等,1990.西藏高原南北走向的地壳结构模型和速度分布特征[C]//西藏地球物理文集.北京:地质出版社,38-50.
王希斌,鲍佩声,肖序常,1987.雅鲁藏布江蛇绿岩[M].北京:测绘出版社,1-128.
魏斯禹,邓肖粤,金志翰,1985.雅鲁藏布江地带的地热活动、地球物理场特征与地壳-上地幔的热状态[J].地球物理学报,28:108-123.
吴功建,肖序常,李廷栋,等,1989.青藏高原亚东—格尔木地学断面[J].地质学报,63(4):285-296.
肖序常,李廷栋,李光岑,等,1990.青藏高原的构造演化[J].地球学报,11(1):123-125.
肖序常,李廷栋,2000.青藏高原的构造演化与隆升机制[M].广州:广东科技出版社,1-313.
熊绍柏,刘宏兵,1997.青藏高原西部的地壳结构[J].科学通报,42(12):1-4.
熊盛青,丁燕云,李占奎,2014.西藏及西南三江深断裂构造格局新认识[J].地球物理学报,57(12):4097-4109.
孙鸿烈,郑度,1998.青藏高原形成演化与发展[M].广州:广东科技出版社,1-348.
赵文津,车敬凯,纳尔逊,等,1996.喜马拉雅地区深反射地震——揭示印度大陆北缘岩石圈的复杂结构[J].地球学报,17(2):138-152.
赵文津,赵逊,史大年,等,2002.喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J].地质通报,21(11):691-700.
钟大赉,丁林,1996.东喜马拉雅构造结变形与运动学研究取得重要进展[J].中国科学基金,10(1):52-53.
朱介寿,曹家敏,李显贵,等,1997.中国及其邻区地球三维结构初始模型的建立[J].地球物理学报(5):627-647.
祝恒宾,周文武,武立高,1985.青藏高原重力场特征及其在大地构造上的含义[J],地球物理学报,增刊,28:60-70.
Sengor A M,周祖翼,丁晓,1992.板块构造学与造山运动:特提斯例析梗概[M].海洋地质译丛(1):1-11.
-
计量
- 文章访问数: 1213
- PDF下载数: 86
- 施引文献: 0