Reconstruction of C4 plant content in Cenozoic lacustrine sediments: An example from the Dahonggou section, Qaidam Basin
-
摘要: 当前气候变暖是一个全球面临的重大问题,它对人类赖以生存的植被生态系统造成的影响已经在全球各地逐步显现出来。为了深入了解植物生态系统对环境和气候变化的响应机制,我们需要更好地借鉴地质历史时期气候环境和植物协同演化的重要事件。C4植物作为陆地生产力较强的植物,在植物生态演化中占举足轻重的地位。目前研究表明C4植物可能最晚起源于始新世-渐新世之交,但从它早期起源到随后在生态系统中的大规模扩张时间间隔长达20多个百万年。是什么因素导致了C4植物的起源和扩张是一个悬而未决的重要问题,需要开展大量的调查研究来评估和重建C4植物在过去生态系统中的相对生物量变化。重建C4植物的含量目前主要的方法是建立在C3/C4植物碳同位素和植物内部结构形态差异基础之上。最常运用的研究材料包括(古)土壤有机质、成壤碳酸盐、陆地食草动物体组织、沉积物生物标志物、孢粉、植硅体等。这些方法在重建现代以及地质历史时期C4植物相对生物量变化的研究中发挥了重要作用,但同时也存在很多无法避免的问题。本文介绍了C4植物起源和扩张机制的主流观点以及不同研究材料的碳同位素所推算C4植物生物量的基本原理,并以柴达木盆地大红沟剖面为例,针对新生代湖泊沉积物中陆生高等植物的长链正构烷烃特征和单体烃碳同位素的研究结果,详细讨论C4植物含量重建的方法与缺点,为探讨C4植物起源、演化及控制因素提供参考。我们通过分析前人研究的大红沟剖面长链正构烷烃及单体烃 δ13Calk 值特征,推测在30~24 Ma、20~17 Ma和13~7 Ma期间δ13Calk值显示相对正偏的原因,可能是干旱和C4植物在当地生态系统中出现的双重因素叠加造成的。但这一推断还需要借助于新的研究方法,即单颗粒孢粉碳同位素的方法来提供C4植物的确凿证据。Abstract: Global climate change has posed serious effect on the vegetation of our ecosystem. In order to understand the response of plant ecosystems to environmental and climate changes, we need to learn well from the earth’s past. C4 plants play a pivotal role in the modern ecosystems. Previous studies have shown that C4 plants originated prior to the Eocene-Oligocene transition, but the expansion of C4 grasses had not happened until the Middle to Late Miocene. What caused the origin and expansion of C4 plants is important in understanding the ecosystem evolution. The current method for estimating C4 contribution is mainly based on the differences in C3/C4 plant carbon isotopes and their structures. The commonly used samples include (paleo-) soil organic matters, pedogenic carbonates, terrestrial herbivore tissues, biomarkers, pollen and phytolith. The application of isotopic difference in these different samples has played an important role in the reconstruction of the relative biomass of C4 plants in modern ecosystems and geological records. This article summarizes the mainstream views related to the driving forces that triggered the origin and expansion of C4 plants, and briefly introduces the basic principles of various materials archiving the biomass of C4 plants evolution history. Finally, taking the Dahonggou section in the Cenozoic Qaidam Basin as an example, the methods and shortcomings of the reconstruction of C4 plant content in lacustrine sediments are discussed in detail based on the long-chain n-alkanes and carbon isotope analysis of Cenozoic terrestrial higher plants. The δ13Calk values of long-chain alkanes vary from~-30‰ to~-26‰, and the δ13Calk values are positive. We believe that the double superposition effect of drought and C4 plant expansion leads to the positive excursions of δ13Calk values. The expansion of C4 vegetation in the Cenozoic Qaidam Basin may be controlled by dry and wet conditions and climate change. But this hypothesis needs to be tested by carbon isotope analysis from single pollen grains.
-
Key words:
- C4 plants /
- carbon isotopes /
- (fossil) soil /
- pedogenic carbonate /
- tooth enamel /
- phytolith /
- N-alkanes /
- carbon isotopes of the single pollen grain
-
-
Aichner B, Herzschuh U, Wilkes H, 2010. Influence of aquatic macrophytes on the stable carbon isotopic signatures of sedimentary organic matter in lakes on the Tibetan Plateau[J]. Organic Geochemistry, 41(7): 706-718.
Basu S, Agrawal S, Sanyal P, et al., 2015. Carbon isotopic ratios of modern C3-C4 plants from the Gangetic Plain, India and its implications to paleovegetational reconstruction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 22-32.
Beerling D J, Royer D L, 2011. Convergent Cenozoic CO2 history[J]. Nature Geoscience, 4(7): 418-420.
Bi X H, Sheng G Y, Liu X H, et al., 2005. Molecular and carbon and hydrogen isotopic composition of n-alkanes in plant leaf waxes[J]. Organic Geochemistry, 36(10): 1405-1417.
Biasatti D, Wang Y, Gao F, et al., 2012. Paleoecologies and paleoclimates of late Cenozoic mammals from Southwest China: Evidence from stable carbon and oxygen isotopes[J]. Journal of Asian Earth Sciences, 44: 48-61.
Bouchenak-Khelladi Y, Verboom G, Hodkinson T, et al., 2009. The origins and diversification of C4 grasses and savanna‐adapted ungulates[J]. Global Change Biology, 15(10): 2397-2417.
Boutton T W, Archer S R, Midwood A J, et al., 1998. δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem[J]. Geoderma, 82(1-3): 5-41.
Bowman C N, Wang Y, Wang X M, et al., 2017. Pieces of the puzzle: Lack of significant C4 in the late Miocene of southern California[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 475: 70-79.
Castañeda I S, Mulitza S, Schefuẞ E, et al., 2009. Wet phases in the Sahara/Sahel region and human migration patterns in North Africa[J]. Proceedings of the National Academy of Sciences, 106(48): 20159-20163.
Cerling T E, 1984. The stable isotopic composition of modern soil carbonate and its relationship to climate[J]. Earth and Planetary Science Letters, 71(2): 229-240.
Cerling T E, Quade J, Wang Y, et al., 1989. Carbon isotopes in soils and palaeosols as ecology and palaeoecology indicators[J]. Nature, 341(6238): 138-139.
Cerling T E, Quade J, 1993a. Stable Carbon and Oxygen Isotopes in Soil Carbonates[M]. American Geophysical Union (AGU).
Cerling T E, Wang Y, Quade J, 1993b. Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene[J]. Nature, 361(6410): 344-345.
Cerling T E, Harris J M, MacFadden B J, et al., 1997. Global vegetation change through the Miocene/Pliocene boundary[J]. Nature, 389(6647): 153-158.
Cerling T E, Harris J M, 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies[J]. Oecologia, 120(3): 347-363.
Cerling T E, Chritz K L, Jablonski N G, et al., 2013a. Diet of Theropithecus from 4 to 1 Ma in Kenya[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10507-10512.
Cerling T E, Manthi F K, Mbua E N, et al., 2013b. Stable isotope-based diet reconstructions of Turkana Basin hominins[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(26): 10501-10506.
Chikaraishi Y, Naraoka H, 2003. Compound-specific δD-δ13C analyses of n-alkanes extracted from terrestrial and aquatic plants[J]. Phytochemistry, 63(3): 361-371.
Christin P-A,Besnard G, Samaritani E, et al., 2008. Oligocene CO2 Decline Promoted C4 Photosynthesis in Grasses[J]. Current Biology, 18(1): 37-43.
Christin P-A, Boxall S F, Gregory R, et al., 2013a. Parallel recruitment of multiple genes into C4photosynthesis[J]. Genome biology and evolution, 5(11): 2174-2187.
Christin P-A, Osborne C P,Chatelet D S, et al., 2013b. Anatomical enablers and the evolution of C4 photosynthesis in grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 110(4): 1381-1386.
Collatz G J, Berry J A, Clark J S, 1998. Effects of climate and atmospheric CO2 partial pressure on the global distribution of C4 grasses: present, past, and future[J]. Oecologia, 114(4): 441-454.
Collister J W, Rieley G, Stern B, et al., 1994. Compound-specific δ13C analyses of leaf lipids from plants with differing carbon dioxide metabolisms[J]. Organic Geochemistry, 21(6): 619-627.
Cotton J M,Cerling T E, Hoppe K A, et al., 2016. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum[J]. Science Advances, 2(3): e1501346.
Covshoff S, Hibberd J M, 2012. Integrating C4 photosynthesis into C3 crops to increase yield potential[J]. Current Opinion in Biotechnology, 23(2): 209-214.
Cramer B S,Toggweiler J R, Wright J D, et al., 2009. Ocean overturning since the Late Cretaceous: Inferences from a new benthic foraminiferal isotope compilation[J]. Paleoceanography, 24(4): PA4216.
De Boer B,Bintanja R, Lourens L, et al., 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records[J]. Annals of Glaciology, 51(55): 23-33.
Diefendorf A F, Mueller K E, Wing S L, et al., 2010. Global patterns in leaf 13C discrimination and implications for studies of past and future climate[J]. Proceedings of the National Academy of Sciences, 107(13): 5738-5743.
Duan Y, He J X, 2011. Distribution and isotopic composition of n-alkanes from grass, reed and tree leaves along a latitudinal gradient in China[J]. Geochemical journal, 45(3): 199-207.
Edwards E J, Osborne C P,Strömberg C A E, et al., 2010a. The Origins of C4 Grasslands: Integrating Evolutionary and Ecosystem Science[J]. Science, 328(5978): 587-591.
Edwards E J, Smith S A, Donoghue M J, 2010b. Phylogenetic Analyses Reveal the Shady History of C4 Grasses[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(6): 2532-2537.
Ehleringer J R, Sage R F, Flanagan L B, et al., 1991. Climate change and the evolution of C4 photosynthesis[J]. Trends in Ecology & Evolution, 6(3): 95-99.
Ehleringer J R, Cerling T E, Helliker B R, 1997. C4 photosynthesis, atmospheric CO2, and climate[J]. Oecologia, 112(3): 285-299.
Gradstein F M,Ogg J G, 2012. Chapter 2 - The Chronostratigraphic Scale[M]. Boston: Elsevier.
Hoetzel S, Dupont L, Schefuẞ E, et al., 2013. The role of fire in Miocene to Pliocene C4 grassland and ecosystem evolution[J]. Nature Geoscience, 6(12): 1027-1030.
Huang Y S, Shuman B, Wang Y, et al., 2006. Climatic and environmental controls on the variation of C3 and C4 plant abundances in central Florida for the past 62,000 years[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 237(2): 428-435.
Huang Y, Street-Perrott F A, Metcalfe S E, et al., 2001. Climate Change as the Dominant Control on Glacial-Interglacial Variations in C3 and C4 Plant Abundance[J]. Science, 293(5535): 1647-1651.
Hui Z C,Gowan E J, Hou Z F, et al., 2021. Intensified fire activity induced by aridification facilitated Late Miocene C4 plant expansion in the northeastern Tibetan Plateau, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 573: 110437.
Ji J L, Zhang K X, Clift P D, et al., 2017. High-resolution magnetostratigraphic study of the Paleogene-Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau[J]. Gondwana Research, 46: 141-155.
Jia G D, Li Z Y, Peng P A, et al., 2012. Aeolian n-alkane isotopic evidence from North Pacific for a Late Miocene decline of C4 plant in the arid Asian interior[J]. Earth and Planetary Science Letters, 321-322: 32-40.
Jia Y X, Wu H B, Zhang W C, et al., 2021. Quantitative Cenozoic climatic reconstruction and its implications for aridification of the northeastern Tibetan Plateau[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 567: 110244.
Jiang W Q, Wu J Y, Wu H B, et al., 2019. Evolution of the relative abundance of C4 plants on the Chinese Loess Plateau since the Last Glacial Maximum and its implications[J]. Journal of Quaternary Science, 34(2): 101-111.
Kadereit G, Ackerly D, Pirie M, 2012. A broader model for C4 photosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.)[J]. Proceedings Biological sciences / The Royal Society, 279(1741): 3304-3311.
Keeley J E,Rundel P W, 2005. Fire and the Miocene expansion of C4 grasslands[J]. Ecology Letters, 8(7): 683-690.
Koch P L, 1998. Isotopic reconstruction of past continental environments[J]. Annual Review of Earth and Planetary Sciences, 26(1): 573-613.
Kohn M J, 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate[J]. Proceedings of the National Academy of Sciences of the United States of America, 107(46): 19691-19695.
Krull E, Sachse D, Mugler I, et al., 2006. Compound-specific delta 13C and delta 2H analyses of plant and soil organic matter: A preliminary assessment of the effects of vegetation change on ecosystem hydrology[J]. Soil Biology & Biochemistry, 38(11): 3211-3221.
Kuypers M M M, Pancost R D, Damsté J S S, 1999. A large and abrupt fall in atmospheric CO2 concentration during Cretaceous times[J]. Nature, 399(6734): 342-345.
Leegood R C, 2013. Strategies for engineering C4 photosynthesis[J]. Journal of Plant Physiology, 170(4): 378-388.
Liu W G, Huang Y S,An Z S, et al., 2005. Summer monsoon intensity controls C4/C3 plant abundance during the last 35 ka in the Chinese Loess Plateau: Carbon isotope evidence from bulk organic matter and individual leaf waxes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3): 243-254.
Liu W G, Yang H, Wang H Y, et al., 2015. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau[J]. Organic Geochemistry, 83-84: 190-201.
Liu Z H, Zhang K X, Sun YY, et al., 2014. Cenozoic Environmental Changes in the Northern Qaidam Basin Inferred from n-alkane Records[J]. Acta Geologica Sinica, 88(5): 1547-1555.
Long S P, 1999. Environmentalresponses[M]. San Diego: Academic Press.
Lopez F B, Barclay G F, 2017. Chapter 4 - Plant Anatomy and Physiology[M]. Boston: Academic Press.
Lu J Y,Algeo T J, Zhuang G S, et al., 2020. The Early Pliocene global expansion of C4 grasslands: A new organic carbon-isotopic dataset from the north China plain[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 538: 109454.
Ma X Y, Wei Z F, Wang Y L, et al., 2021. Speculation for quantifying increased C4 plants under future climate conditions: Inner Mongolia, China case study[J]. Quaternary International, 592: 97-110.
Mead R, Xu Y P, Chong J, et al., 2005. Sediment and soil organic matter source assessment as revealed by the molecular distribution and carbon isotopic composition of n-alkanes[J]. Organic Geochemistry, 36(3): 363-370.
Miao Y F, Herrmann M, Wu F L, et al., 2012.What controlled Mid-Late Miocene long-term aridification in Central Asia? — Global cooling or Tibetan Plateau uplift: A review[J]. Earth-Science Reviews, 112(3): 155-172.
Nelson D M, Hu F S, Michener R H, 2006. Stable-carbon isotope composition ofPoaceae pollen: an assessment for reconstructing C3 and C4 grass abundance[J]. The Holocene, 16(6): 819-825.
Nelson D M, Hu F S,Mikucki J A, et al., 2007. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface[J]. Geochimica et Cosmochimica Acta, 71(16): 4005-4014.
Nelson D M, Hu F S, Scholes D R, et al., 2008. Using SPIRAL (Single Pollen Isotope RatioAnaLysis) to estimate C3- and C4-grass abundance in the paleorecord[J]. Earth and Planetary Science Letters, 269(1): 11-16.
Nelson D M, Urban M A, Hu F S, 2014. Spatiotemporal variation in the origin of C4 grasses: δ13C analysis of grass pollen from the southeastern United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 396: 227-231.
Nelson D M, Urban M A, Kershaw A P, et al., 2016. Late-Quaternary variation in C3 and C4 grass abundance in southeastern Australia as inferred from δ13C analysis: Assessing the roles of climate, pCO2, and fire[J]. Quaternary Science Reviews, 139: 67-76.
O’Leary M H, 1981. Carbon isotope fractionation inplants[J]. Phytochemistry, 20(4): 553-567.
O’Leary M H, 1988. Carbon Isotopes in Photosynthesis: Fractionation techniques may reveal new aspects of carbon dynamics in plants[J]. BioScience, 38(5): 328-336.
Osborne C P,Beerling D J, 2006. Nature’s green revolution: the remarkable evolutionary rise of C4 plants[J]. Philosophical Transactions: Biological Sciences, 361(1465): 173-194.
Osborne C P, 2008.Atmosphere, ecology and evolution: what drove the Miocene expansion of C4 grasslands?[J]. The Journal of ecology, 96(1): 35-45.
Osborne C P, 2011. Chapter 17 The Geologic History of C4 Plants[M]. Dordrecht: Springer Netherlands.
Pagani M, Zachos J C, Freeman K H, et al., 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene[J]. Science, 309(5734): 600-603.
Pagani M, Huber M, Liu Z H, et al., 2011. The Role of Carbon Dioxide During the Onset of Antarctic Glaciation[J]. Science, 334(6060): 1261-1264.
Pedentchouk N, Sumner W, Tipple B, et al., 2008. δ13C and δD compositions of n-alkanes from modern angiosperms and conifers: An experimental set up in central Washington State, USA[J]. Organic Geochemistry, 39(8): 1066-1071.
Prasad V,Strömberg C A E, Leaché A D, et al., 2011. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae[J]. Nature Communications, 2(1): 480.
Rao Z G,Guo W K, Cao J T, et al., 2017. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 165: 110-119.
Rieley G, Collier R J, Jones D M, et al., 1991. Sources of sedimentary lipids deduced from stable carbon-isotope analyses of individual compounds[J]. Nature, 352(6334): 425-427.
Rieley G, Collister J, Stern B, et al., 1993. Gas chromatography/isotope ratio mass spectrometry of leaf wax n-alkanes from plants of differing carbon dioxide metabolisms[J]. Rapid Communications in Mass Spectrometry, 7: 488-491.
Rommerskirchen F, Plader A, Eglinton G, et al., 2006. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J]. Organic Geochemistry, 37(10): 1303-1332.
Royer D L, Wing S L, Beerling D J, et al., 2001a. Paleobotanical evidence for near present-day levels of atmospheric CO2 During Part of the Tertiary[J]. Science, 292(5525): 2310-2313.
Royer D L,Berner R A, Beerling D J, 2001b. Phanerozoic atmospheric CO2 change: evaluating geochemical and paleobiological approaches[J]. Earth-Science Reviews, 54(4): 349-392.
Sage R F, Monson R K, 1998. C4 Plant Biology[M]. Elsevier.
Sage R F, Li M, Monson, et al., 1999a. The taxonomic distribution of C4 photosynthesis[M]. San Diego: Academic Press.
Sage R F,Wedin D A, Li M, 1999b. C4 Plant Biology[M]. San Diego: Academic Press.
Sage R F,Kubien D S, 2003. Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants[J]. Photosynthesis Research, 77(2-3): 209-225.
Sage R F, Christin P-A, Edwards E J, 2011a. The C4 plant lineages of planet Earth[J]. Journal of Experimental Botany, 62(9): 3155-3169.
Sage R F, Zhu X G, 2011b. Exploiting the engine of C4 photosynthesis[J]. Journal of Experimental Botany, 62(9): 2989-3000.
Sage R F, Sage T L,Kocacinar F, 2012. Photorespiration and the evolution of C4 photosynthesis[J]. Annual review of plant biology, 63(1): 19-47.
Sage R F, Stata M, 2015. Photosynthetic diversity meets biodiversity: The C4 plant example[J]. Journal of Plant Physiology, 172: 104-119.
Sage R F, 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame[J]. Journal of experimental botany, 68(2): 4039-4056.
Schefuẞ E, Ratmeyer V, Stuut J-B W, et al., 2003a. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 67(10): 1757-1767.
Schefuẞ E, Schouten S, Jansen J H F, et al., 2003b. African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period[J]. Nature, 422(6930): 418-421.
Still C, Berry J,Collatz G, et al., 2003. Global distribution of C3 and C4 vegetation: Carbon cycle implications[J]. Global Biogeochemical Cycles, 17(1): 1006.
Strömberg C A E, 2005. Decoupled taxonomic radiation and ecological expansion of open-habitat grasses in the Cenozoic of North America[J]. Proceedings of the National Academy of Sciences, 102(34): 11980-11984.
Strömberg C A E, 2011. Evolution of Grasses and Grassland Ecosystems[J]. Annual Review of Earth and Planetary Sciences, 39: 517-544.
Sun J M,Lü T Y, Gong Y Z, et al., 2013. Effect of aridification on carbon isotopic variation and ecologic evolution at 5.3 Ma in the Asian interior[J]. Earth and Planetary Science Letters, 380: 1-11.
Sun Y Y, Liu J, Liang Y, et al., 2020. Cenozoic moisture fluctuations on the northeastern Tibetan Plateau and association with global climatic conditions[J]. Journal of Asian Earth Sciences, 200: 104490.
Thomas E K, Huang Y S, Morrill C, et al., 2014. Abundant C4 plants on the Tibetan Plateau during the Lateglacial and early Holocene[J]. Quaternary Science Reviews, 87: 24-33.
Tipple B J,Pagani M, 2007. The Early Origins of Terrestrial C4 Photosynthesis[J]. Annual Review of Earth and Planetary Sciences, 35(1): 435-461.
Tipple B J, Meyers S R,Pagani M, 2010a. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies[J]. Paleoceanography, 25(3): PA3202.
Tipple B J,Pagani M, 2010b. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record: Implications for C4 grasslands and hydrologic cycle dynamics[J]. Earth and Planetary Science Letters, 299(1-2): 250-262.
Troughton J H, Card K A, 1975. Temperature effects on the carbon-isotope ratio of C3, C4 and crassulacean-acid-metabolism (CAM) plants[J]. Planta, 123(2): 185-190.
Uno K,Polissar P, Jackson K, et al., 2016. Neogene biomarker record of vegetation change in eastern Africa[J]. Proceedings of the National Academy of Sciences, 113(23): 6355-6363.
Urban M A, Nelson D M, Jiménez-Moreno G, et al., 2010. Isotopic evidence of C4 grasses in southwestern Europe during the Early Oligocene-Middle Miocene[J]. Geology, 38(12): 1091-1094.
Vogts A, Moossen H, Rommerskirchen F, et al., 2009. Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species[J]. Organic Geochemistry, 40(10): 1037-1054.
von Caemmerer S, Quick W P, Furbank R T, 2012. The development of C4 rice: current progress and future challenges[J]. Science, 336(6089): 1671-1672.
Wang Y, Deng T, 2005. A 25 m.y. isotopic record of paleodiet and environmental change from fossil mammals and paleosols from the NE margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 236(1-2): 322-338.
Weissmann S, Brutnell T P, 2012. Engineering C4 photosynthetic regulatory networks[J]. Current Opinion in Biotechnology, 23(3): 298-304.
Zucol A, Brea M, Bellosi E, 2010. Phytolith analysis in Gran Barranca (central Patagonia): the middle-late Eocene[M]. Cambridge University Press.
李颖莉,冯乔,姜文娟,等,2012. 柴达木盆地西部新近纪岩相古地理研究[J]. 沉积与特提斯地质, 32(2): 31-36.
路晶芳,宋博文,陈锐明,等,2010. 柴达木盆地大柴旦地区大红沟古近纪孢粉组合序列与地层对比[J]. 地球科学: 中国地质大学学报, 35(5): 839-848.
宋博文,张克信,季军良,等,2010. 柴达木盆地北缘锡铁山-长山梁古近纪沉积演化[J]. 沉积与特提斯地质, 30(1): 1-10.
旺罗,吕厚远,吴乃琴,等,2004. 青藏高原高海拔地区C4植物的发现[J]. 科学通报, 49(13): 1290-1293.
杨柳, 2020. 巴丹吉林沙漠塔布吉格徳湖2000年来的正构烷烃单体碳同位素组成及气候变化[D]. 北京:中国地质大学(北京). DOI:10.19826/j.cnki.1009-3850.2022.06007
任军平,古阿雷,王杰,孙宏伟,左立波,孙凯,许康康,Chipilauka Mukofu,Evaristo Kasumba,DANIEL Malunga,杜明龙,邢仕,刘子江,张津瑞,董津蒙,2022.赞比亚班韦乌卢变质克拉通东北部姆巴拉组碎屑锆石U-Pb年龄和Hf同位素特征.沉积与特提斯地质,42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007.
REN J P, GU A L, WANG J, SUN H W, ZUO L B, SUN K, XU K K, Chipilauka Mukofu, Evaristo Kasumba, DANIEL Malunga, DU M L, XING S, LIU Z J, ZHANG J R, DONG J M, 2022. Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia. Sedimentary Geology and Tethyan Geology, 42(4):585-597.DOI:10.19826/j.cnki.1009-3850.2022.06007.
-
计量
- 文章访问数: 346
- PDF下载数: 61
- 施引文献: 0