Detrital zircon U-Pb ages and Hf isotopic characteristics of the Mbala Formation in the northeast Bangweulu Metacraton, Zambia
-
摘要: 班韦乌卢变质克拉通活动时间和地壳增长问题一直是地质学家关注的焦点。本文通过对班韦乌卢地块中卡帕图地区姆波罗科索群姆巴拉组石英砂岩进行了碎屑锆石U-Pb年代学和Hf同位素研究,结合变质克拉通已有成果获得认识如下:(1)姆巴拉组的形成时间可能介于(1833±22 Ma)~(1712±22 Ma)之间,属于古元古代。(2)姆巴拉组具有丰富的物质来源,其中2728~2602 Ma(峰值为2650 Ma)的物质可能来源于坦桑尼亚克拉通中的花岗岩类、粗面安山岩及流纹岩等岩石。2246~1833 Ma(峰值为1880 Ma)的物质主要来源于班韦乌卢地块中花岗岩类、石英闪长岩及火山岩类等岩石。(3)班韦乌卢变质克拉通的活动时间包括中太古代、新太古代、古元古代和中元古代四个时期,其中古元古代(1870 Ma)为活动的高峰期,涉及范围广泛,可能与哥伦比亚超大陆的演化密切相关。(4)班韦乌卢变质克拉通沉积岩的源区地壳增生除来自古老地壳的再循环物质外,还存在新生地壳的物质。同时,地壳在古太古代-古元古代均实现了增长,其中凯诺兰超大陆聚合时期(2550 Ma)增长最快。在古元古代之前的地壳主增长期与坦桑尼亚克拉通及全球大陆地壳主增长期基本一致。Abstract: The activity time and crustal growth of Bangweulu Metacraton have always been the focus of geologists. This paper studied the detrital zircon U-Pb ages and Hf isotopic characteristics of quartz sandstone from the Mbala Formation in Kapatu area. Based on the previous results of Bangweulu Metacraton, the paper has obtained the following understanding: (1) The Mbala Formation might formed between (1833±22 Ma) and (1712±22 Ma), belonging to the Paleoproterozoic. (2) The Mbala Formation is rich in material sources, among which the material of 2728 ~ 2602 Ma (peak age is 2650 Ma) may be derived from granitoids, trachyandesite, rhyolite and other rocks in Tanzania Craton. The material of 2246~1833 Ma (peak age is 1880 Ma) is mainly derived from granitoids, quartz diorite, volcanic rocks and other rocks in the Bangweulu Block. (3) The activity time of the Bangweulu Metacraton includes Middle Archean, Neoarchean, Paleoproterozoic and Mesoproterozoic. The Paleoproterozoic (1870 Ma) was the peak of the activity, which may be closely related to the evolution of the Columbia Supercontinent. (4) In addition to the recycled materials from the ancient crust, the crust accretion in the source area of the Bangweulu Metacraton sedimentary rocks also contains new crust materials. The crust has achieved growth from Paleoarchean to Paleoproterozoic, with the fastest growth in Kenorland Supercontinent convergence (Neoarchean 2550 Ma). Before Paleoproterozoic, the main growth period of the Bangweulu Metacraton is basically the same as the Tanzania Craton and the global continental crust.
-
Key words:
- Bangweulu Metacraton /
- Irumide belt /
- Lufilian belt /
- detrital zircon /
- Paleoproterozoic /
- Zambia
-
-
Abdelsalam M, Liégeois J P, Stern R J, 2002. The Saharan metacraton[J]. Journal of African Earth Sciences, 34(3-4):119-136.
Ackermann E, 1950. Ein neuer Faltengürtel in Nordrhodesien und seine tektonische Stellung im afrikanischen Grundgebirge[J]. Geologische Rundschau, 38(1):24-39..
Amelin Y, Lee D C, Halliday A N, et al., 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature, 399:252-255.
Andersen L S, Unrug R, 1984. Geodynamic evolution of the Bangweulu Block, northern Zambia[J]. Precambrian Research, 25(1):187-212.
Andrews-Speed C P, 1986. Gold-bearing fluvial and associated tidalmarine sediments of Proterozoic age in the Mporokoso Basin, northern Zambia[J]. Sediment Geology, 48(3-4):193-222.
Andrews-Speed C P, 1989. The Mid-Proterozoic Mporokoso basin, northern Zambia:sequence stratigraphy, tectonic setting and potentialfor gold and uranium mineralisation[J]. Precambrian Research, 44(1):1-17.
Armstrong R A, Master S, Robb L J, 2005. Geochronology of the Nchanga Granite, and constraints on the maximum age of the Katanga Supergroup, Zambian Copper belt[J]. Journal of African Earth Sciences, 42(1):32-40.
Black R, Liégeois J P, 1993. Cratons, mobile belts, alkaline rocks and continental lithospheric mantle:the Pan-African testimony[J]. Journal of the Geological Society of London, 150(1):89-98.
Blichert-Toft J, Albarède F, 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system[J]. Earth and Planetary Science Letters, 148(1-2):243-258.
Boven A, Theunissen K, Sklyarov E., et al., 1999. Timing of exhumation of a high-pressure mafic granulite terrane of the Paleoproterozoic Ubende belt(West Tanzania)[J]. Precambrian Research, 93(1):119-137.
Cailteux J L H, Binda P L, Katekesha W M, et al., 1994. Lithostratigraphical correlation of the Neoproterozoic Roan Supergroup from Shaba(Zaire) and Zambia, in the Central African copper-cobalt metallogenic province[J]. Journal of African Earth Sciences, 19(4):265-278.
Cailteux J L H, De Putter T, 2019. The Neoproterozoic Katanga Supergroup(D. R. Congo):State-of-the-art and revisions of the lithostratigraphy, sedimentary basin and geodynamic evolution[J]. Journal of African Earth Sciences, 150:522-531.
Cailteux J L H, Kampunzu A B, Lerouge C, 2007. The Neoproterozoic Mwashva-Kansuki sedimentary rock succession in the central African Copperbelt, its Cu-Co mineralisation, and regional correlations[J]. Gondwana Research, 11(3):414-431.
Cailteux J L H, Kampunzu A B, Lerouge C, et al., 2005. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African copper belts[J]. Journal of African Earth Sciences, 42(1/5):134-158.
Condie K C, 1998. Episodic continental growth and supercontinents:a mantle avalanche connection?[J]. Earth and Planetary Science Letters, 163(1-4):97-108.
Cosi M, De Bonis A, Gosso G, et al., 1992. Late Proterozoic thrust tectonics, high-pressure metamorphism and uranium mineralization in the Domes area, Lufilian Arc, northwestern Zambia[J]. Precambrian Research, 58(1-4):215-240.
Daly M C, Chakraborty S K, Kasolo P., et al., 1984. The Lufilian arc and Irumide belt of Zambia:results of a geotraverse across their intersection[J]. Journal of African Earth Sciences, 2(4):311-318.
Daly M C, Unrug R, 1982. The Muva Supergroup, Northern Zambia[J]. Transactions of the Geological Society of Africa, 85(3):155-165.
De Swardt A M J, Garrard P, Simpson J G, 1965. Major zones of transcurrent dislocation and superposition of orogenic belts in parts of central Africa[J]. Bulletin Geological Society of America, 76(1):89-102.
De Waele B, Johnson S P, Nkemba S,et al., 2005. High-temperature, low-pressure tectono-thermal evolution of the Irumide Belt, central, Southern Africa: Lithosphere delamination during arc-accretion[J]. Frontier Research on Earth Evolution Report, 2004(2):1-9.
De Waele B, Fitzsimons I C W, 2007. The nature and timing of Palaeoproterozoic sedimentation at the southeastern margin of the Congo Craton:zircon U-Pb geochronology of plutonic, volcanic and clastic units in northern Zambia[J]. Precambrian Research, 159:95-116.
De Waele B, Fitzsimons I C W, Wingate M T D, et al., 2009. The geochronological framework of the Irumide Belt:A prolonged crustal history along the margin of the Bangweulu Craton[J]. American Journal of Science, 309:132-187
De Waele B, Liégeois J P, Nemchin A A, et al., 2006a. Isotopic and geochemical evidence of proterozoic episodic crustal reworking within the Irumide e belt of south-central Africa, the southern metacratonic boundary of an Archaean Bangweulu Craton[J]. Precambrian Research, 148, 225-256.
De Waele B, Kampunzu A B, Mapani B S E, et al., 2006b. The Mesoproterozoic Irumide belt of Zambia[J]. Journal of African Earth Sciences, 46:36-70.
De Waele B, Wingate M T D, Mapani B, et al., 2003b. Untying the Kibaran knot:a reassessment of Mesoproterozoic correlations in southern Africa based on SHRIMP U-Pb data from the Irumide belt[J]. Geology, 31(6):509-512.
Drysdall A R, Johnson R L, Moore T A, et al., 1972. Outline of the geology of Zambia[J]. Geol. Mijnbouw, 51:265-276.
Geng J Z, Qiu K F, Gou Z Y, et al., 2017. Tectonic regime switchover of Triassic Western Qinling Orogen:Constraints from LA-ICP-MS zircon U-Pb geochronology and Lu-Hf isotope of Dangchuan intrusive complex in Gansu, China[J]. Geochemistry, 77(4):637-651.
Hoskin P W O, Black L P, 2000. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology, 18(4):423-439.
John T, Schenk V, Mezger K, et al., 2004. Timing and PT Evolution of Whiteschist Metamorphism in the Lufilian Arc-Zambezi Belt Orogen(Zambia):Implications for the Assembly of Gondwana[J]. The Journal of Geology, 112(1):71-90.
Kampunzu A B, Cailteux J L H, Kamona A F, et al., 2009. Sediment-hosted Zn-Pb-Cu deposits in the Central African Copperbelt[J]. Ore Geology Reviews, 35(3-4):263-297.
Kampunzu A B, Cailteux J, 1999. Tectonic evolution of the Lufilian Arc(central African copper belt) during Neoproterozoic Pan African orogenesis[J]. Gondwana Research, 2(3):401-421.
Key R M, Liyungu A K, Njamu F M, et al., 2001. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization[J]. Journal of African Earth Sciences, 33(3-4):503-528.
Kröner A., 1977. The Precambrian geotectonic evolution of Africa:plate accretion versus plate destruction[J]. Precambrian Research, 4(2):163-213.
Lenoir J L, Liégeois J P, Theunissen K, et al., 1994. The Palaeoproterozoic Ubendian shear belt in Tanzania:geochronology and structure[J]. Journal of African Earth Sciences, 19:169-184.
Li H K, Zhang C L, Yao C Y, et al., 2013. U-Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze massif[J]. Science China: Earth Sciences, 56(4):628-639.
Liu Y S, Gao S, Hu Z C, et al., 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2):537-571.
Mapani B S E, 1992. Stratigraphy and correlation of the Serenje and adjoining areas[J]. Zambian Journal of Applied Earth Sciences, 6(1):1-8.
Master S, Rainaud C, Armstrong R A, et al., 2005. Provenance ages of the Neoproterozoic Katanga Supergroup(Central African Copperbelt), with implications for basin evolution[J]. Journal of African Earth Sciences, 42(1):41-60.
Mc Gowan R R, Roberts S, Boyce A J, 2006. Origin of the Nchanga copper-cobalt deposits of the Zambian Copperbelt[J]. Mineralium Deposita, 40(6-7):617-638.
Muchez P, Brems D, Clara E, et al., 2010. Evolution of Cu-Co mineralizing fluids at Nkana Mine, Central African Copperbelt, Zambia[J]. Journal of African Earth Sciences, 58:457-474.
Pehrsson S J, Berman R G, Eglington B, et al., 2013. Two Neoarchean supercontinents revisited: The case for a Rae family of cratons[J]. Precambrian Research, 232:27-48.
Pinna P, Cocherie A, Thieblemont D, et al., 1999. The Archaean evolution of the Tanzanian Craton(2.93- 2.53 Ga)[J]. Journal of African Earth Sciences, 28(4):62-63.
Rainaud C, Master S, Armstrong R A, et al., 2003. A cryptic Mesoarchaean terrane in the basement to the central African Copperbelt[J]. Journal of the Geological Society, 160(1):11-14.
Rainaud C, Master S, Armstrong R A, et al., 2005. Geochronology and nature of the Palaeoproterozoic basement in the Central African Copperbelt(Zambia and the Democratic Republic of Congo), with regional implications[J]. Journal of African Earth Sciences, 42(1-5):1-31.
Ren J P, Wang J, Gu A L, et al., 2022. Study on gold enrichment characteristics in Zambia: Based on 1∶1000000 geochemical mapping[J].China Geology, 5(1):60-70.
Ren J P, Wang J, Zuo L B, et al., 2017. Zircon U-Pb and biotite 40Ar/39Ar geochronology from the Anzan emerald deposit in Zambia[J]. Ore Geology Reviews, 91:612-619.
Ren J P, Wang J, Zuo L, et al., 2020. Enrichment characteristics of Cu and Co displayed by low-density geochemical mapping in Zambia[J]. Journal of Geochemical Exploration, 219(2):106634, doi.org/10.1016/j.gexplo.2020.106634.
Sanislav I V, Wormald R J, Dirks P H G M, et al., 2014. Zircon U-Pb ages and Lu-Hf isotope systematics from late-tectonic granites, Geita Greenstone Belt:Implications for crustal growth of the Tanzania Craton[J]. Precambrian Research, 242:187-204.
Schandelmeier H, 1981. The Precambrian of NE-Zambia in relation to the dated Kate, Mambwe and Luchewe intrusives[J]. Geologische Rundschau, 70(3):956-971.
Unrug R, 1984. The Mid-Proterozoic Mporokoso Group of northern Zambia:stratigraphy, sedimentation and regional position[J]. Precambrian Research, 24(2):99-121.
Wendorff M, 2005. Evolution of Neoproterozoic-Lower Palaeozoic Lufilian arc, Central Africa:a new model based on syntectonic conglomerates[J]. Journal of the Geological Society, 162(1):5-8.
Yang D B, Xu W L, Xu Y G, et al., 2013. Provenance of sediments from Mesozoic basins in western Shandong: Implications for the evolution of the North China Block[J]. Journal of Asian Earth Sciences, 76(2):12-29.
第五春荣,2021.华北克拉通南部太古宙大陆地壳的生长和演化[J].岩石学报,37(2):317-340.
杜明龙,纪山青,任军平,等,2021.赞比亚伊索卡南部Kachinga长石砂岩碎屑锆石U-Pb年龄、地球化学特征及地质意义[J].地质学报,95(4):1050-1071.
耿建珍,李怀坤,张健,等,2011.锆石Hf同位素组成的LA-MC-ICP-MS测定[J].地质通报,30(10):1508-1513.
古阿雷,王杰,任军平,等,2021.赞比亚北部卡帕图地区古元古代花岗岩成因:岩石地球化学、锆石年代学及Hf同位素约束[J].地质学报,95(4):999-1018.
刘晓阳,王杰,任军平,等,2017.赞比亚谦比西铜矿花岗岩年龄及其指示意义[J].中国地质,44(4):755-765.
陆松年,陈志宏,相振群,等,2006.秦岭岩群副变质岩碎屑锆石年龄谱及其地质意义探讨[J].地学前缘,13(6):303-310.
任军平,胡鹏,王杰,等,2021a.非洲矿业发展概况[J].地质学报,95(4):945-961.
任军平,王杰,古阿雷,等,2017a.赞比亚卢弗里安弧地区矿产资源研究现状及找矿潜力分析[J].中国矿业,26(11):139-144.
任军平,王杰,古阿雷,等,2018a.赞比亚东北部卡萨马—陇都地区碎屑锆石裂变径迹年代学特征[J].原子能科学技术,52(12):2275-2282.
任军平,王杰,古阿雷,等,2019b.赞比亚东北部正长花岗岩的锆石U-Pb年龄和Lu-Hf同位素特征[J].地质调查与研究,42(3):161-165.
任军平,王杰,古阿雷,等,2021b.赞比亚东北部班韦乌卢地块泛非期以来构造演化的裂变径迹约束[J].地质学报,95(4):1072-1081.
任军平,王杰,刘晓阳,等,2013.非洲中南部卢弗里安弧Cu-Co矿床研究进展[J].地质科技情报,32(5):142-152.
任军平,王杰,刘晓阳,等,2017b.非洲中南部铜多金属矿床研究现状及找矿潜力分析[J].吉林大学学报(地球科学版),47(4):1083-1103.
任军平,王杰,孙宏伟,等,2019a.赞比亚东北部卡萨马群形成环境:碎屑锆石U-Pb年龄与Hf同位素的限定[J].中国地质,46(3):575-586.
任军平,王杰,张东红,等,2018b.赞比亚卢弗里安弧构造带再活化的证据:锆石和磷灰石裂变径迹年代学[J].地球科学,43(6):1850-1860.
任军平,王杰,左立波,等,2019c.赞比亚北部省卡萨马西部石英闪长岩锆石U-Pb和Lu-Hf同位素及地球化学特征[J].地质学报,93(11):2832-2846.
任军平,左立波,许康康,等,2016.赞比亚北部班韦乌卢地块演化及矿产资源研究现状[J].地质论评,62(4):979-996.
孙宏伟,王杰,任军平,等,2021.班韦乌卢地块中部变质表壳岩碎屑锆石U-Pb年代学、Hf同位素研究及其构造意义[J].地质学报,95(4):1245-1259.
万渝生,董春艳,颉颃强,等,2015.华北克拉通太古宙研究若干进展[J].地球学报,36(6):685-700.
吴福元,李献华,郑永飞,等,2007.Lu-Hf同位素体系及其岩石学应用[J].岩石学报,23(2):185-220.
邢仕,纪山青,王杰,等,2021.赞比亚东北部卡布韦卢马组碎屑锆石U-Pb年代学和Hf同位素特征[J].地质学报,95(4):1191-1211.
许康康,孙凯,何胜飞,等,2021.赞比亚西北省Solwezi地区石榴云母片岩的碎屑锆石U-Pb年龄及其地质意义[J].华北地质,44(3):1-3.
左立波,任军平,邱亮,等,2021.赞比亚伊索卡东部片麻岩锆石U-Pb年代学、地球化学特征及岩石成因[J].地质学报,95(4):1144-1158.
左立波,任军平,王杰,等,2020.赞比亚班韦乌卢地块花岗岩地球化学特征、锆石U-Pb年龄及Lu-Hf同位素组成[J].地质调查与研究,43(1):30-41.
-
计量
- 文章访问数: 1239
- PDF下载数: 80
- 施引文献: 0