Features and origin of calcirudites in the first member of Feixianguan Formation in Guangyuan area, northwestern Sichuan Province
-
摘要:
广元上寺剖面早三叠世砾屑灰岩对上扬子地区P-T事件后的古环境变化研究具有重要的理论意义。本文以下三叠统飞仙关组一段格里斯巴赫亚阶的砾屑灰岩为研究对象,通过沉积学、岩石学方法,结合不同砾屑灰岩碳、氧同位素变化特征来分析其可能的成因。结果表明,这些砾屑灰岩可划分出4大类:剖面下部的Ⅰ型砾屑灰岩,形状不规则,大小混杂,缺乏板条状砾屑,推测为重力流成因;Ⅱ型砾屑灰岩(角砾状灰岩)砾屑直径大,含大量分米级板条状砾屑,推测为强度和频率急剧增加的风暴诱发的沉积;Ⅲ型砾屑灰岩(扁平砾屑灰岩)的砾屑平行于层面分布,平面上呈扁平状,垂向切片呈竹叶状,具有倒“小”字、菊花状构造和局部呈叠瓦状排列等特征,推测为机械-压溶复合成因;Ⅳ型砾屑灰岩显示为蠕虫状灰岩,代表着水动力条件相对较弱的环境,推测为生物-机械复合成因。风暴对先期沉积的灰岩的撕裂是扁平砾屑形成的基础,后期成岩过程中泥质填隙物与灰岩砾屑的差异压实是扁平砾屑灰岩形成的又一原因。蠕虫状灰岩可能为生物-风暴、成岩作用共同的结果,与扁平砾屑灰岩在成因上有一定的联系。上寺剖面飞一段碳酸盐岩碳同位素曲线显示出缓慢上升的趋势,角砾状灰岩(Ⅱ型砾屑灰岩)发育后期碳同位素发生正偏,指示着沉积环境的过渡转折,可能和这一时期风暴作用对海洋的影响致使浮游微生物繁盛有关。
Abstract:The Early Triassic calcirudites in the Shangsi section, Guanyuan city, have great significance for the study of paleoenvironmental changes after the latest Permian mass extinction (LPME) in the Upper Yangtze region. In this paper, we studied the possible cause of formation of the Griesbachian calcirudites from the first member of the Feixianguan Formation, using the methods of sedimentology, petrology, and C-O isotopic geochemistry. The results show that these calcirudites can be subdivided into four types: Type-Ⅰ calcirudites appear in the lower part of the section, with irregular shapes, mixed sizes, and a lack of lath-shaped gravels, indicating a gravity flow origin; Type-Ⅱ calcirudites contain an abundance of decimeter-sized flat pebbles with large gravel diameters, suggesting storm-induced deposition with increased intensity and frequency; Type-Ⅲ calcirudites show flat gravels distributed in parallel with the bedding plane and "bamboo leaf-shaped" gravels in the vertical section, with the characteristics of a chrysanthemum-shaped structure and imbricate arrangement, suggesting a mechanical and pressure solution origin; Type-Ⅳ calcirudites are vermicular limestones, representing a relatively weak water flow condition, suggesting a microbial and mechanical combined origin. Stromatolites altered the earlier limestones, which are the foundation for the formation of flat gravels. Later, argillaceous fillings and differential compaction of calcareous gravels during the diagenetic period constitute another reason for the formation of flat gravels. Vermicular limestones could be a result of the combination of biology and storms with diagenesis, which have a potential connection in cause with flat calcirudites. The carbon isotope curve of carbonate rocks from the first member of the Feixianguan Formation shows a slowly ascending trend, and the carbon isotope curve exhibits a positive shift in brecciated limestone (Type-Ⅱ calcirudite), indicating a transition of sedimentary environment, which could be the result of thriving planktonic microorganisms in oceans related to storms during this period.
-
-
表 1 上寺剖面飞仙关组一段砾屑灰岩分类表
Table 1. Classification of calcirudites in the Feixianguan Formation, Shangsi section
序号 岩石名称 砾屑特征 砾屑粒径区间 支撑结构 磨圆度 沉积构造 Ⅰ 重力流砾屑灰岩 不规则状,见少量板条状 巨砾—细砾 杂基支撑 棱角状—次圆状 粒序构造,块状构造,砾屑“漂浮状” Ⅱ 角砾状灰岩 椭球状,大量板条状 中砾—细砾 颗粒支撑,少量杂基支撑 次圆状—圆状 菊花状构造(倒 “小”字),沙纹层理 Ⅲ 扁平砾屑灰岩 竹叶状 中砾 颗粒支撑 次圆状—圆状 叠瓦状构造,递变层理,侵蚀构造 Ⅳ 蠕虫状灰岩 不规则蠕虫状,鲕粒和生屑丰富 细砾 颗粒支撑 次圆状—圆状 砾屑边缘见溶蚀锯齿状边缘 表 2 上寺剖面飞仙关组1段全岩碳、氧同位素数据
Table 2. Carbon and oxygen isotope data of bulk rock in the Feixianguan Formation, Shangsi section
飞仙关组1段全岩碳、氧同位素 层位 岩性 δ13C/‰ δ18O/‰ 1 层 灰质泥岩 -6.4 -7.5 1 层 泥晶灰岩 -2.9 -4.5 1 层 纹层状微晶灰岩 -2.5 -4.8 2 层 微晶灰岩 -1.9 -5.1 2 层 微晶灰岩 -2.2 -5.7 3 层 砾屑灰岩 -0.8 -4.3 4 层 微晶灰岩 -1.7 -5 4 层 透镜状微晶灰岩 -1.9 -5 4 层 薄层状微晶灰岩 -2.2 -6.3 5 层 厚层微晶灰岩 -1.6 -5.5 5 层 厚层微晶灰岩 -2.4 -6.7 6 层 厚层灰岩 -1.2 -5.5 6 层 厚层微晶灰岩 -1.3 -4.9 7 层 厚层灰岩 -1.4 -5.4 7 层 微晶灰岩 -0.9 -4.8 8 层 中薄层微晶灰岩 -0.5 -4.8 8 层 中薄层泥晶灰岩 -1.3 -5.3 8 层 中薄层状微晶灰岩 -1.7 -5.6 8 层 中薄层状泥晶灰岩 -1.8 -6.8 9 层 泥晶灰岩 -1.4 -5.4 9 层 中薄层泥晶灰岩 -1.1 -5.6 9 层 中薄层泥晶灰岩 -0.4 -5.7 10 层 角砾状砾屑灰岩 -0.89 -5.8 10 层 角砾状砾屑灰岩 -0.3 -5.6 11 层 扁平砾屑灰岩 -0.26 -4.4 11 层 扁平砾屑灰岩 0.3 -5.5 11 层 扁平砾屑灰岩 0.29 -5.6 11 层 微晶灰岩 -0.29 -6.7 11 层 纹层状颗粒灰岩 0.5 -5.8 12 层 扁平砾屑灰岩 0.4 -5.1 12 层 扁平砾屑灰岩 0.4 -5.1 12 层 微晶灰岩 0.4 -5.5 13 层 扁平砾屑灰岩 0.4 -5.2 13 层 砾屑灰岩 0.4 -4.7 表 3 上寺剖面飞仙关组1段砾屑灰岩基质全岩碳、氧同位素数据
Table 3. Carbon and oxygen isotope data of micrites of calcirudites in the Feixianguan Formation, Shangsi section
飞仙关组1段砾屑灰岩基质碳、氧同位素 层位 岩性 δ13C/‰ δ18O/‰ 3层 Ⅰ型砾屑灰岩 -0.98 -6.7 3层 Ⅰ型砾屑灰岩 -0.79 -6.06 3层 Ⅰ型砾屑灰岩 -0.81 -5.59 3层 Ⅰ型砾屑灰岩 -0.88 -5.5 3层 Ⅰ型砾屑灰岩 -0.71 -5.86 3层 Ⅰ型砾屑灰岩 -0.75 -5.69 10层 Ⅱ型砾屑灰岩 1.37 -7.12 10层 Ⅱ型砾屑灰岩 0.7 -5.51 10层 Ⅱ型砾屑灰岩 2.05 -6.02 10层 Ⅱ型砾屑灰岩 0.73 -5.43 10层 Ⅱ型砾屑灰岩 2.34 -5.26 10层 Ⅱ型砾屑灰岩 1.76 -6.1 12层 Ⅲ型砾屑灰岩 1.79 -5.4 13层 Ⅲ型砾屑灰岩 1.61 -5.5 13层 Ⅳ型砾屑灰岩 1.72 -5.59 13层 Ⅳ型砾屑灰岩 1.83 -6.8 13层 Ⅳ型砾屑灰岩 1.77 -5.53 13层 Ⅳ型砾屑灰岩 1.51 -5.86 -
[1] Baresel B, Bucher H, Brosse M, et al. , 2017. Precise age for the Permian–Triassic boundary in South China from high-precision U-Pb geochronology and Bayesian age–depth modeling[J]. Solid Earth, 8(2): 361-378. doi: 10.5194/se-8-361-2017
[2] Barron E J, 1989. Severe storms during Earth history[J]. Geological Society of America Bulletin, 101(5): 601-612. doi: 10.1130/0016-7606(1989)101<0601:SSDEH>2.3.CO;2
[3] 陈吉涛, 韩作振, 张晓蕾, 等, 2009. 鲁西芙蓉统条带灰岩早期成岩变形构造——竹叶状砾屑灰岩形成机理探讨[J]. 中国科学(D辑), (12): 1732-1743
Chen J T, Han Z Z, Zhang X L, et al. , 2009. Early diagenetic deformation structures of the Furongian ribbon rocks in Shandong Province, China—A new perspective of the genesis of limestone conglomerates[J]. Science in China(Series D), (12): 1732-1743.
[4] 程明, 2014. 重庆地区早三叠世错时相沉积类型及形成机理[D]. 成都: 成都理工大学.
Cheng M, 2014. Types, distributions and origins of Early Triassic anachronistic facies in Chongqing area[D]. Chengdu: Chengdu University of Technology.
[5] Cui Y, Kump L R, Ridgwell A, 2013. Initial assessment of the carbon emission rate and climatic consequences during the end-Permian mass extinction[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 389, 128-136.
[6] Deng B Z, Wang Y B, Woods A D, et al. , 2015, Lower Triassic anachronistic facies capping the Qinghai-Tibet Plateau seamount: Implications for the extension of extraordinary oceanic conditions deep into the interior Tethys Ocean[J]. Global and Planetary Change, 132: 31-38. doi: 10.1016/j.gloplacha.2015.06.009
[7] 杜远生, 殷鸿福, 1997. 秦岭造山带晚加里东-早海西期的盆地格局与构造演化[J]. 地球科学: 中国地质大学学报, 22(4): 401-405
Du Y S, Yin H F, 1997. The late caledonian-early hercynian basin’s framework and tectonic evolution of qinling orogenic belt[J]. Earth Science: Journal of China University of Geosciences, 22(4): 401-405.
[8] Erwin D H, 2006. Extinction: how life on earth nearly ended 250 million years ago[M]. New York: Princeton University Press.
[9] 冯仁蔚, 王兴志, 张帆, 等, 2007. 川西北广旺地区飞仙关组沉积岩石学特征及沉积环境分析[J]. 地质调查与研究, 30(2): 98-109
Feng R W, Wang X Z, Zhang F, et al. Characteristic of Sedimentary Petrography and Depositing Environment of the Feixianguan Fm. in Guangyuan-Wangcang Southwestern Sichuan Province[J]. Geological survey and research, 30(2): 98-109.
[10] 冯增昭, 鲍志东, 吴胜和, 等, 1997. 中国南方早中三叠世岩相古地理[J]. 地质科学, 32(2): 212-220
Feng Z Z, Bao Z D, Wu S H, et al. , 1997. Lithofacies palaeogeography of the early and middle triassic of south china[J]. Scientia geologica sinica, 32(2): 212-220.
[11] Flügel E R, Kiessling W. 2002. A new look at ancient reefs[J]. SEPM Special Publication, 72, 3-10.
[12] Grotzinger J P, Knoll A H, 1995. Anomalous carbonate precipitates: is the Precambrian the key to the Permian?[J]. Palaios, 578-596.
[13] Hallam A, Wignall P B. Mass Extinctions and Their Aftermath[M]. Oxford University Press, New York, N Y, United States, 1997: 320.
[14] 何冰辉, 常蓝天, 吴鹏, 等, 2014. 古-中生代生物灭绝与华南早三叠世错时相沉积研究[J]. 长江大学学报(自然科学版), (9): 24-30
He B H, Chang T L, Wu P, et al. , 2014. Study of Paleo-Mesozoic extinction and Early Triassic anachronistic facies in South China[J]. Journal of Yangte University (Natural Science Edition), (9): 24-30.
[15] 黄思静, 李小宁, 胡作维, 等, 2016. 四川盆地东部开江-梁平海槽东西两侧三叠系飞仙关组碳酸盐岩碳氧同位素组成对比及古海洋学意义[J]. 地球化学, 45(1): 24-40 doi: 10.3969/j.issn.0379-1726.2016.01.002
Huang S J, Li X N, Wu P, et al. , 2016. Comparison of carbon and oxygen isotopic composition of Feixianguan carbonates, Early Triassic, between east and west sides of Kaijiang-Liangping trough, Sichuan Basin, and the significance for paleoceanography[J]. Geochimica, 45(1): 24-40. doi: 10.3969/j.issn.0379-1726.2016.01.002
[16] 黄思静, 1993. 四川重庆中梁山P/T界线黏土层中非粘土组分的研究[J]. 沉积学报, 11(3): 105-113
Huang S J, 1993. Microspherulitic and Clastic Mineral in the Clay Rock Near the Permian-Triassic Interface of Zhongliangshan Mountain, Chongqing[J]. Acta sedimentologica sinica, 11(3): 105-113.
[17] 黄思静, 1984. 蠕虫状灰岩及其成因[J]. 成都地质学院学报, 3: 60-68
Huang S J, 1984. Vermicular limestone and its origin[J]. Journal of Chengdu University of tecnology, 3: 60-68.
[18] Hoefs J, 2009. Stable Isotope Geochemistry (6th Edition) [M]. Berlin: Springer-Verlag, 25.
[19] 姜月华, 岳文浙, 业治铮, 等, 1992. 蠕虫状灰岩特征和成因新探[J]. 矿物岩石, 1: 1-7 doi: 10.19719/j.cnki.1001-6872.1992.01.001
Jiang Y H, Yue W Z, Ye Y Z, et al. , 1992. The new approach on the characteristics and origin for vermicular limestone[J]. Mineralogy and Petrology, 1: 1-7. doi: 10.19719/j.cnki.1001-6872.1992.01.001
[20] Joachimski M M, Lai Z, Shen S, et al. , 2012. Climate warming in the latest Permian and the Permian–Triassic mass extinction[J]. Geology, 40(3): 195–198. doi: 10.1130/G32707.1
[21] 金若谷, 黄恒铨. 1987. 四川广元上寺二叠系—三叠系界线剖面沉积特征及环境演变[G]. 地层古生物论文集, (2), 32-75
Jin R G, Huang H Q, 1987. Sedimentary features and environmental evolution of the Permian-Triassic Boundary section in Shangsi, Guangyuan, Sichuan Province[G]. Proceedings of Strgraphic Paleontology, (2), 32-75.
[22] Kaufman A J, Knoll A H, 1995. Neoproterozoic variation in the C-isotope composition of seawater: stratigraphic and biogeochemical implications[J]. Precambrian Research, 73: 27-49. doi: 10.1016/0301-9268(94)00070-8
[23] Kershaw S, 2017. Palaeogeographic variation in the Permiane Triassic boundary microbialites: A discussion of microbial and ocean processes after the end-Permian mass extinction[J]. Journal of Palaeogeography, 2017, 6(2): 97-107. doi: 10.1016/j.jop.2016.12.002
[24] Kump L R, Arthur M A, 1999. Interpreting carbon-isotope excursions: carbonates and organic matter[J]. Chemical Geology, 161(1-3): 181-198. doi: 10.1016/S0009-2541(99)00086-8
[25] Kump L R, Pavlov A, Arthur M A, 2005. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia[J]. Geology, 33(5): 397-400. doi: 10.1130/G21295.1
[26] Kump L R, Kasting J F, Robinson J M, 1991. Atmospheric oxygen variation through geologic time: introduction[J]. Global and Planetary Change, 5: 1-3. doi: 10.1016/0921-8181(91)90122-D
[27] Lai X L, Yang F Q, Hallam A, et al. , 1996. The Shangsi section, candidate of the global stratotype section and point of the Permian–Triassic boundary. [M]//Yin H F (Ed. ), The Paleozoic–Mesozoic Boundary Candidates of Global Stratotype Section and Point of the Permian–Triassic Boundary. Wuhan: China University of Geosciences Press, 113-124.
[28] 李朋, 周向辉, 李忠林, 等, 2014. 鄂西地区早三叠世大冶组蠕虫状灰岩沉积特征及其成因分析[J]. 资源环境与工程, 28(B04): 31-34 doi: 10.16536/j.cnki.issn.1671-1211.2014.s1.006
Li P, Zhou X H, Li Z L, et al. , 2014. Sedimentary characteristics and genetic analysis of vermicular limestone in Daye Formation of Early Triassic in Western Hubei[J]. Resources Environment Engineering, 28(B04): 31-34. doi: 10.16536/j.cnki.issn.1671-1211.2014.s1.006
[29] 李玉成, 1999. 华南晚二叠世至早三叠世初灰岩碳同位素地层旋回[J]. 南京大学学报(自然科学版), 5(3): 77-285
Li Y C, 1999. Carbon isotope cyclostratigraphy of the permo-triassic transitional limestones in south china[J]. Journal of nanjing university (natural sciences), 5(3): 77-285.
[30] Luo G, Kump L R, Wang Y, et al. , 2010. Isotopic evidence for an anomalously low oceanic sulfate concentration following end-Permian mass extinction[J]. Earth and Planetary Science Letters, 300(1-2): 101-111. doi: 10.1016/j.jpgl.2010.09.041
[31] 罗根明, 谢树成, 刘邓, 等. 2014. 二叠纪-三叠纪之交重大地质突变期微生物对环境的作用[J]. 中国科学: 地球科学, 44: 1193–1205
Luo G M, Xie S C, Liu D, et al. , 2014. Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis[J]. Science China: Earth Sciences, 44: 1193–1205.
[32] Marenco P J, Corsetti F A, Bottjer D J, et al., 2003. Killer oceans of the Early Triassic[G]// Geological Society of America 2003 Seattle Annual Meeting, Seattle, Washington, November 2–5.
[33] Marsaglia K M, Klein G D, 1983. The paleogeography of Paleozoic and Mesozoic storm depositional systems[J]. The Journal of Geology, 91(2): 117-142. doi: 10.1086/628752
[34] Piotr J, Alfred U, 2010. A hypersaline ichnoassemblage from the Middle Triassic carbonate ramp of the Tatricum domain in the Tatra Mountains, Southern Poland[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 292(1-2): 71-81.
[35] Pruss S B, Corsetti F A, Bottjer D J, 2005. The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(1-2): 33-52.
[36] 钱守荣, 1995. 蠕虫状灰岩成因新解[J]. 淮南矿业学院学报, 15(3): 15-19
Qian S R, 1995. A new interpretation of the genesis of vermicular limestone[J]. Journal of Huainan Mining Institute, 15(3): 15-19.
[37] 钱守荣, 1996. 蠕虫状灰岩中的同生变形构造及其成因[J]. 安徽地质, 6(1): 38-41
Qian S R, 1996. Syngenetic deformation structures in Vermicular limestone and their genesis[J]. Anhui Geology, 6(1): 38-41.
[38] Racki G, 1999. Silica-secreting biota and mass extinctions: survival patterns and processes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 154(1-2): 107-132.
[39] 芮琳, 王义刚, 陈楚震, 等, 1986. 四川广元上寺剖面二叠系-三叠系界线位置在哪里[J]. 地层学杂志, 13(2): 151-156
Rui L, Wang Y G, Chen C Z, et al. , 1986. Where is the Permian Triassic boundary of Shangsi section in Guangyuan, Sichuan Province[J]. Journal of Stratigraphy, 13(2): 151-156.
[40] Retallack G J, Veevers J J, Morante R, 1996. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants[J]. Geological Society of America Bulletin, 108(2): 195-207. doi: 10.1130/0016-7606(1996)108<0195:GCGBPT>2.3.CO;2
[41] Sepkoski J, 1991. Secular changes in Phanerozoic event bedding and the biological overprint[J]. Cycles and events in stratigraphy, 298-312.
[42] Shen S Z, Crowley J L, Wang Y, et al. , 2011. Calibrating the end-Permian mass extinction[J]. Science, 334(6061): 1367-1372. doi: 10.1126/science.1213454
[43] 时志强, 安红艳, 伊海生, 等, 2011. 上扬子地区早三叠世异常碳酸盐岩的分类与特征[J]. 古地理学报, 13(1): 1-10 doi: 10.7605/gdlxb.2011.01.001
Shi Z Q, An H Y, Yi H S, et al. , 2011. Classification and characters of the early triassic anomalous carbonate rocks in upper yangtze area[J]. Journal of palaeogeography, 13(1): 1-10. doi: 10.7605/gdlxb.2011.01.001
[44] 时志强, 伊海生, 曾德勇, 等, 2010. 上扬子地区下三叠统飞仙关组一段: 大灭绝后从停滞海洋到动荡海洋的沉积学记录[J]. 地质论评, 56(6): 669-780
Shi Z Q, Yi H S, Zeng D Y, et al. , 2010. The Lowest Member of Lower Triassic Feixianguan Formation in Upper Yangtze Region: Sedimentary Records from Sluggish Water to Turbulent Ocean after the Mass Extinction[J]. Geology review, 56(6): 669-780.
[45] Compilation group of petroleum geology of Sichuan oil and gas region, 1989. Petroleum Geology of China [M]. Beijing: Petroleum Industry Press, 158-234.
[46] 宋逢林, 杨浩, 王钦贤, 2010, 湖南慈利礁相二叠系一三叠系界线地层及其对大灭绝事件的启示[J]. 华南地质与矿产, 3: 51-56 doi: 10.3969/j.issn.1007-3701.2010.03.008
Song P L. Yang H, Wang Q X, 2010. Reef Facies Strata of Permian-Triassic Boundary in Kangjiaping Section, Cili Area, Hunan Province and Its Implications for Biological Mega-deracination[J]. Geology and Mineral Resources of South China, 3: 51-56. doi: 10.3969/j.issn.1007-3701.2010.03.008
[47] 宋海军, 童金南, 2016. 二叠纪-三叠纪之交生物大灭绝与残存[J]. 地球科学, 41(6): 901-918
Song H J, Tong J N, 2016. Mass extinction and survival during the permian-triassic crisis[J]. Earth Science, 41(6): 901-918.
[48] 宋海军, 童金南, 熊炎林, 等, 2012. δ13Ccarb深度梯度的剧增与二叠纪末生物大灭绝[J]. 中国科学: 地球科学, 42(8): 1182-1191
Song H J, Tong J N, Xiong Y L, et al. , 2012. The large increase of 13Ccarb-depth gradient and the end-Permian mass extinction[J]. Science China: Earth Sciences, 42(8): 1182-1191.
[49] 童金南, 殷鸿福, 2009. 早三叠世生物与环境研究进展[J]. 古生物学报, 48(3): 497-508 doi: 10.3969/j.issn.0001-6616.2009.03.020
Tong J N, Yin H F, 2009. Advance in the study of early triassic life and environment[J]. Acta Palaeontologica Sinica, 48(3): 497-508. doi: 10.3969/j.issn.0001-6616.2009.03.020
[50] Tong J N, Zhang S X, Zuo J X, et al. , 2007. Events during Early Triassic recovery from the end-Permian extinction[J]. Global and Planetary Change, 55: 66-80. doi: 10.1016/j.gloplacha.2006.06.015
[51] 王一刚, 文应初, 洪海涛, 等, 2009. 四川盆地北部晚二叠世-早三叠世碳酸盐岩斜坡相带沉积特征[J]. 古地理学报, 11(2): 143-156 doi: 10.7605/gdlxb.2009.02.002
Wang Y G, Wen Y C, Hong H T, et al. , 2009. Carbonate slope facies sedimentary characteristics of the late permian to early triassic in northern sichuan basin[J]. Journal of palaeogeography, 11(2): 143-156. doi: 10.7605/gdlxb.2009.02.002
[52] 王一刚, 文应初, 洪海涛, 等, 2006. 四川盆地及邻区上二叠统-下三叠统海槽的深水沉积特征[J]. 石油与天然气地质, 27(5): 702-714 doi: 10.3321/j.issn:0253-9985.2006.05.017
Wang Y G, Wen Y C, Hong H T, et al. , 2006. Petroleum geological characteristics of deep water deposits in upper permian-lower triassic trough in sichuan basin and adjacent areas [J]. Oil Gas Geology, 27(5): 702-714. doi: 10.3321/j.issn:0253-9985.2006.05.017
[53] 王一刚, 张静, 刘兴刚, 等, 2005. 四川盆地东北部下三叠统飞仙关组碳酸盐蒸发台地沉积相[J]. 古地理学报, (3): 357-371 doi: 10.3969/j.issn.1671-1505.2005.03.007
Wang Y G, Zhang J, Liu Y X, et al. , 2005. Sedimentary facies of evaporative carbonate platform of the Feixianguan Formation of Lower Triassic in northeastern Sichuan Basin[J]. Journal of palaeogeography, (3): 357-371. doi: 10.3969/j.issn.1671-1505.2005.03.007
[54] Wei H Y, Shen J, Shane D S, et al. , 2015. Environmental controls on marine ecosystem recovery following mass extinctions, with an examplefrom the Early Triassic[J]. Earth-Science Reviews, 149: 108–135. doi: 10.1016/j.earscirev.2014.10.007
[55] 魏国齐, 陈更生, 杨威, 等, 2004. 川北下三叠统飞仙关组“槽台”沉积体系及演化[J]. 沉积学报, 22(20): 254-260 doi: 10.14027/j.cnki.cjxb.2004.02.009
Wei G Q, Chen G S, Yang W, et al. , 2004. Sedimentary System of Platformal Trough of Feixianguan Formation of Lower Triassic in Northern Sichuan Basin and Its Evolution[J]. Acta sedimentologica sinica, 22(20): 254-260. doi: 10.14027/j.cnki.cjxb.2004.02.009
[56] Wignall P B and Twitchett R J, 1999. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end‐Permian mass extinction[J]. Sedimentology, 46(2): 303-316. doi: 10.1046/j.1365-3091.1999.00214.x
[57] Woods A D, 2013. Microbial ooids and cortoids from the Lower Triassic (Spathian) Virgin Limestone, Nevada, USA: evidence for an Early Triassic microbial bloom in shallow depositional environments[J]. Global and Planetary Change, 105: 91-101. doi: 10.1016/j.gloplacha.2012.07.011
[58] Woods A D, 2005. Paleoceanographic and paleoclimatic context of Early Triassic time[J]. Comptes Rendus Palevol, 4(6-7): 463-472. doi: 10.1016/j.crpv.2005.07.003
[59] Woods A D, Bottjer D J, Mutti M, et al. , 1999. Lower Triassic large sea-floor carbonate cements: their origin and a mechanism for the prolonged biotic recovery from the end-Permian mass extinction[J]. Geology, 27(7): 645-648. doi: 10.1130/0091-7613(1999)027<0645:LTLSFC>2.3.CO;2
[60] 谢树成, 王风平, 颜佳新, 等, 2016. 若干重大地质环境突变的地球生物学过程[J]. 科技资讯, (21): 176-177 doi: 10.3969/j.issn.1672-3791.2016.21.107
Xie S C, Wang F P, Yan J X, et al. , 2016. Geobiological Processes During Critical Environmental Transitions in Earth History [J]. Science technology information, (21): 176-177. doi: 10.3969/j.issn.1672-3791.2016.21.107
[61] 余宽宏, 畅通, 邱隆伟, 等, 2015. 华北地台早古生代竹叶状灰岩岩石特征及成因研究进展[J]. 沉积学报, 33(6): 1111-1125 doi: 10.14027/j.cnki.cjxb.2015.06.005
Yu K H, Chang T, Qiu L W, et al. , 2015. Research Development of Flat-pebble Conglomerate Characteristics and Their Origin in Early Paleozoic North China Platform[J]. Acta sedimentologica sinica, 33(6): 1111-1125. doi: 10.14027/j.cnki.cjxb.2015.06.005
[62] 颜佳新, 伍明, 2006. 显生宙海水成分, 碳酸盐沉积和生物演化系统研究进展[J]. 地质科技情报, 25(3): 1-7
Yan J X, Wu M, 2006. Synchronized Osciliations in Phamerozoic Chemical Composition of seawater, Carbonate Sediemtation and Biotic Evolution: Progresses and Prospects[J]. Geological Science and Technology Information, 25(3): 1-7.
[63] Yin H, Jiang H, Xia W, et al. , 2014. The end-Permian regression in South China and its implication on mass extinction[J]. Earth-Science Reviews, 137: 19-33. doi: 10.1016/j.earscirev.2013.06.003
[64] 张廷山, 陈晓慧, 刘治成, 2012. 四川盆地东南部早三叠世地震事件沉积及其地质意义[J]. 沉积学报, 30(3): 477-489 doi: 10.14027/j.cnki.cjxb.2012.03.015
Zhang T S, Chen X H, Liu Z C, 2012. Seismites and Their Geological Significance in Early Triassic of Southeast Sichuan Basin[J]. Acta sedimentologica sinica, 30(3): 477-489. doi: 10.14027/j.cnki.cjxb.2012.03.015
[65] 张红剑, 周跃飞, 谢巧勤, 等, 2017. 安徽巢湖二叠系-三叠系界线微生物岩研究[J]. 合肥工业大学学报(自然科学版), 40(6): 822-828 doi: 10.3969/j.issn.1003-5060.2017.06.020
Zhang H J, Zhou Y F, Xie Q Q, et al. , 2017. Study of the microbialite from Permian-Triassic boundary in Chaohu, Anhui Province [J]. Journal of hefei university of technology (natural sciences), 40(6): 822-828. doi: 10.3969/j.issn.1003-5060.2017.06.020
[66] 张华, 时志强, 罗凤姿, 等, 2011. P-T事件后特提斯洋从停滞到动荡的岩石学证据[J]. 成都理工大学(自然科学版), 38(2): 175-184
Zhang H, Shi Z Q, Luo F Z, et al. , 2011. The petrological evidences of sluggish to oscillating Tethys ocean after the P-T event[J]. Journal of Chengdu university of technology(Science Techonlogy edition), 38(2): 175-184.
[67] 张杰, 2008. 下扬子地区早三叠世蠕虫状灰岩及其成因研究[D]. 武汉: 中国地质大学(武汉).
Zhang J, 2008. Early Triassic vermicular limestone and its genesis in the lower Yangtze Region[D]. Wuhan: China University of Geosciences(Wuhan).
[68] 张杰, 童金南, 2010. 下扬子地区下三叠统蠕虫状灰岩及其成因[J]. 古地理学报, 12(5): 535-548 doi: 10.7605/gdlxb.2010.05.004
Zhang J, Tong J N, 2010. Vermicular limestone of the Lower triassic and its origin in lower yangtze region[J]. Journal of palaeogeography, 12(5): 535-548. doi: 10.7605/gdlxb.2010.05.004
[69] Zhang X Y, Zheng Q F, Li Y, et al. , 2020. Polybessurus-like fossils as key contributorsto Permian–Triassic boundary microbialites in South China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 109790
[70] 赵小明, 童金南, 姚华舟, 张克信, 2008. 华南早三叠世错时相沉积及其对复苏期生态系的启示[J]. 中国科学(D辑). 38(12): 1564-1574
Zhao X M, Tong J N, Yao H Z, Zhang K X, 2008. Early Triassic anachronistic facies in South China and their implications for the recovery ecosystem[J]. Science in China (Series D) :Earth Sciences, 38(12): 1564-1574.
[71] 赵小明, 牛志军, 童金南, 等, 2010. 早三叠世生物复苏期的特殊沉积[J]. 沉积学报, 28(2): 214-323
Zhao X M, Niu Z J, Tong J N, et al. , 2010. The distinctive Sediments in the early triassic recovery time “Anachronistic Facies” [J]. Acta sedimentologica sinica, 28(2): 214-323.
[72] 赵永胜, 王多义, 胡志水, 1994. 四川盆地西缘早三叠世早期碳酸盐重力流沉积与环境[J]. 沉积学报, 12(2): 1-9 doi: 10.14027/j.cnki.cjxb.1994.02.001
Zhao Y S, Wang D Y, Hu Z S, 1994. Early Triassic carbonate gravity flow deposition and environment in the western margin of Sichuan Basin[J]. Acta sedimentologica sinica, 12(2): 1-9. doi: 10.14027/j.cnki.cjxb.1994.02.001
[73] Zheng B S, Mou C L, Wang X P, et al. , 2021, Paleoclimateand paleoceanographic evolution during the Permian-Triassic transition(western Hubei area, SouthChina) and their geological implications[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 564: 110-166.
[74] 朱洪发, 王恕一, 苏南, 1992. 皖南三叠纪瘤状灰岩、蠕虫状灰岩的成因[J]. 石油实验地质, 14(4): 454-460 doi: 10.11781/sysydz199204454
Zhu H F, Wang S Y, Su N, 1992. Genesis of Triassic nodular limestone and vermicular limestone in southern Anhui[J]. Petroleum experimental geology, 14(4): 454-460. doi: 10.11781/sysydz199204454
[75] 左景勋, 童金南, 赵来时, 等, 2013. 早三叠世下扬子古海洋地球化学环境的修复过程[J]. 地球科学: 中国地质大学学报, 38(3): 441-453
Zuo J X, Tong J N, Zhao L S, et al. , 2013. Geochemical environment restoration of the lower yangtze paleocean in the early triassic, southeastern china[J]. Earth Science-Journal of China University of Geosciences, 38(3): 441-453.
[76] 左景勋, 童金南, 邱海鸥, 等, 2004. 巢湖平顶山北坡剖面早三叠世碳、氧同位素地层学研究[J]. 地层学杂志, 28(1): 40-47
Zuo J X, Tong J N, Qiu H O, et al. , 2004. Carbon and Oxygen isotope stratigraphy of the Lower Triassic at Northern Pingdingshan section of Chaohu, Anhui Province, China[J]. Journal of stratigraphy, 28(1): 40-47.
[77] 曾德勇, 时志强, 张华, 等, 2011. 广元上寺剖面下三叠统飞仙关组风暴岩: 巨型季风体制下的极端气候事件?[J]. 沉积学报, 29(3): 440-448 doi: 10.14027/j.cnki.cjxb.2011.03.015
Zeng D Y, Shi Z Q, Zhang H, et al. , 2011. Tempestite of Early Triassic Feixianguan Formation in Shangsi Section, Guanyuan: Are they extreme climatic event under megamonsoon system? [J]. Acta sedimentologica sinica, 29(3): 440-448. doi: 10.14027/j.cnki.cjxb.2011.03.015
-