New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group
-
摘要: 原花山群分布于紧邻南秦岭的扬子陆块北缘大洪山地区,出露于重要的构造部位,是研究其形成时期扬子陆块构造演化及其与南秦岭关系的重要载体,其物质组成、形成时代和构造属性长期存在争论。本文将原花山群解体为花山构造混杂岩和正常的火山—沉积地层(本文所指花山群)两部分来讨论。笔者重新厘定了花山群的沉积时限,有针对性地对有构造背景争议的花山群进行玄武岩地球化学研究,对有时代争议的混杂岩进行锆石U-Pb年代学研究。年代学、地球化学和沉积学综合研究表明,花山群的沉积时限为ca. 830 Ma至ca. 800 Ma,形成于与Rodinia超大陆裂解有关的陆内裂谷盆地。花山构造混杂岩带可能不只是晋宁期的缝合带,而是具有多期物质组成、经历了多期构造叠加的复合型缝合带。结合他人成果,我们提出了扬子陆块与南秦岭从新元古代到早古生代的构造演化新模式。Abstract: The Huashan Group, distributed in the Dahongshan area on the northern margin of the Yangtze Block that adjoining the South Qinling, is an important carrier to study the tectonic evolution of the Yangtze Block and South Qinling. Long-standing debates persist on the material composition, depositional ages and tectonic nature of the Huashan Group. In this study, the Huashan Group were dismembered into the Huashan tectonic mélange and the Huashan Group that with normal volcanic-sedimentary stratigraphy, and their tectonic natures were discussed separately. Depositional age of the Huashan Group has been redefined here, geochemical features of the basalt from the Huashan Group with the controversy of the tectonic background and zircon U-Pb dating of the tectonic mélange with the controversy of the age are studied. A synthesis of geochronological, geochemical, and sedimentological study results indicate that the Huashan Group was deposited during ca. 830-800 Ma and in an intracontinental rift basin which resulted from the breakup of the Rodinia supercontinent. The Huashan tectonic mélange belt may not a product constrained just by the Jinning orogeny, but a complex suture zone with multistage sources and tectonic superposition. Combining the existing study achievements, we propose a new understanding on the tectonic evolution of the Yangtze Block and the South Qinling during the Neoproterozoic to the Early Paleozoic.
-
-
Barth M G,McDonough W F,Rudnick R L,2000,Tracking the budget of Nb and Ta in the continental crust[J]. Chemical Geology,165:197-213.
陈超,毛新武,胡正祥,等,2017. 鄂北大洪山地区~817 Ma洋岛玄武岩的发现及意义[J]. 地质科技情报,36(6):22-31
Chen C,Mao X W,Hu Z X,et al. ,2017. Discovery of ~817 Ma oceanic island basalts in the Dahongshan region,northern Huber Province and its significance[J]. Geological Science and Technology Information,36(6):22-31.
陈超,苑金玲,孔令耀,等,2018. 扬子北缘大洪山地区早古生代基性岩脉的厘定及其地质意义[J]. 地球科学,43(7):2370-2388
Chen C,Yuan J L,Kong L Y,et al. ,2018. Documentation of Early Paleozoic magic dykes in the Dahongshan region,northern Yangze block and its geological significance[J]. Earth Science,43(7):2370-2388.
崔晓庄,江新胜,王剑,等,2014. 滇中新元古代裂谷盆地充填序列及演化模式:对Rodinia超大陆裂解的响应[J]. 沉积学报,32(3):399-409
Cui X Z,Jiang X S,Wang J,et al. ,2014. Filling sequence and evolution model of the Neoproterozoic rift basin in central Yunnan Province,South China:Response to the breakup of Rodinia Supercontinent[J]. Acta Sedimentologica Sinica,32(3):399-409.
Deng Q,Wang J,Wang Z J,et al. ,2013. Continental flood basalts of the Huashan Group,northern margin of the Yangtze block – implications for the breakup of Rodinia[J]. International Geology Review,55(15):1865-1884.
Deng Q,Wang J,Cui X Z,et al. ,2016. The Type and Evolution of Neoproterozoic Sedimentary Basin in the Dahongshan Region,Northern Margin of the Yangtze Block:An Insight from Sedimentary Characteristics of the Huashan Group[J]. Acta Geologica Sinica,90(5):1917-1918.
邓奇,王剑,汪正江,等,2016. 江南造山带新元古代中期(830~750 Ma)岩浆活动及对构造演化的制约[J]. 大地构造与成矿学,40(4):753-771
Deng Q,Wang J,Wang Z J,et al. ,2016. Middle Neoproterozoic magmatic activities and their constraints on tectonic evolution of the Jiangnan Orogen[J]. Geotectonica et Metallogenia,40(4):753-771.
Dong Y P,Zhang G W,Lai S C,et al. ,1999. An ophiolitic tectonic melange first discovered in Huashan area,south margin of Qinling orogenic belt,and its tectonic implications[J]. Science in China (Series D),42(3),292-302.
Dong Y P,Zhang G W,Zhao X,et al. ,2004. Geochemistry of the subduction-related magmatic rocks in the Dahong Mountains,northern Hubei Province:constraint on the existence and subduction of the eastern Mianlue oceanic basin[J]. Science in China (Series D),47(4),366-377.
董云鹏,张国伟,柳小明,等,1998. 鄂北大洪山地区“花山群”的解体中国区域地质[J]. 中国区域地质,17(4):371-376
Dong Y P,Zhang G W,Liu X M,et al. ,1998. Disintegration of the Huashan Group in the Dahong Mountain area,northern Hubei[J]. Regional Geology of China,17(4):371-376.
董云鹏,惠博,孙圣思,等,2022. 中国中央造山系原−古特提斯多阶段复合造山过程[J]. 地质学报,https//doi.org/10.19762/j.cnki.dizhixuebao.2022245.
Dong Y P,Hui B,Sun S S,et al. ,2022. Multiple orogeny and geodynamics from Proto−Tethys to Paleo−Tethys of the Central China Orogenic Belt[J]. Acta Geologica Sinica,https://doi.org/10.19762/j.cnki.dizhixuebao.2022245.
Du Q D, Wang Z J, Wang J, et al., 2013. Geochronology and paleoenvironment of the pre-Sturtian glacial strata: Evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China[J]. Precambrian Research, 233: 118-131.
Fitton J G,James D,Kempton P D,et al. ,1988. The role of lithospheric mantle in the generation of late Cenozoic basic magmas in the western United States[J]. Journal of Petrology,Special Lithosphere Issue:331−349.
湖北省地质矿产局,1996. 湖北省岩石地层[M]. 武汉:中国地质大学出版社.
Bureau of Geology and Mineral Resources of Hubei Province,1996. Stratigraphy (Lithostratic) of Hubei Province[M]. Wuhan:China University of Geosciences Press.
胡正祥,陈超,毛新武,等,2015. 鄂北大洪山晋宁期岛弧火山岩和增生杂岩的厘定及地质意义[J]. 资源环境与工程,29(6):757-766
Hu Z X,Chen C,Mao X W,et al,2015. Documentation of Jingningian island-arc volcanic rocks and accretionary complexes in the Dahongshan region,northern Hubei and its tectonic significance[J]. Resources Environment and Engineering,29(6):757-766.
胡正祥,陈超,毛新武,等,2017. 扬子北缘青白口系土门岩组岛弧火山-碎屑岩的定义及意义[J]. 地层学杂志,41(3):304-317
Hu Z X,Chen C,Mao X W,et al,2017. The Qingbaikouan Tumen Formation-complex island arc volcanic-clastic rocks on the northern margin of Yangtze block and its significance[J]. Journal of Stratigraphy,41(3):304-317.
Huang Y,Wang X L,Li J Y,et al. ,2021. Early Neoproterozoic tectonic evolution of northern Yangtze Block:Insights from sedimentary sequences from the Dahongshan area[J]. Precambrian Research,365:106382.
Jiang X S,Wang J,Cui X Z,et al. ,2012. Zircon SHRIMP U-Pb geochronology of the Neoproterozoic Chengjiang Formation in central Yunnan Province(SW China) and its geological significance[J]. Science China Earth Sciences,55(11):1815-1826.
江新胜,崔晓庄,卓皆文,等,2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质,40(3):31-37
Jiang X S,Cui X Z,Zhuo J W,et al. ,2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin,western Yangtze Block,South China[J]. Sedimentary Geology and Tethyan Geology,40(3):31-37.
Lan Z W,Li X H,Zhu M Y,et al. ,2015. Revisiting the Liantuo Formation in Yangtze Block,South China:SIMS U-Pb zircon age constraints and regional and global significance[J]. Precambrian Research,263:123-141.
Leat P T,Thompson M A,Hendry G L,et al. ,1988. Compositionally−Diverse Miocene−Recent Rift−Related Magmatism in Northwest Colorado:Partial Melting,and Mixing of Mafic Magmas from 3 Different Asthenospheric and Lithospheric Mantle Sources[J]. Journal of Petrology,Special Lithosphere Issue:351−377.
李乐倩,张宏福,2021. 桐柏造山带榴辉岩早古生代高压变质作用的发现[J]. 岩石学报,37(12):3575-3590
Li L Q,Zhang H F,2021. Discovery of Early Paleozoic high-pressure metamorphism of eclogite in Tongbai orogen[J]. Acta Petrologica Sinica,37(12):3575-3590.
Li K Z,Deng Q,Wang J,et al. ,2020. Detrital zircon in the Huashan Group,northern Yangtze Block:Implications for the nature of Neoproterozoic sedimentary basins and Precambrian crustal evolution[J]. Geological Journal,55(12):8211-8224.
Li K Z,Deng Q,Hou M C,et al. ,2020. Geochronology and sedimentology of the Huashan Group in the northern Yangtze Block:implications for the initial breakup of the South China[J]. International Journal of Earth Sciences,109:2113-2131.
Li X H,Li Z X,Zhou H W,et al. ,2002. U-Pb zircon geochronology,geochemisty and Nd isotopic study of the Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of South China:implications for the initial rifting of Rodinia[J]. Precambrian Research,113:135-154.
李献华,王选策,李武显,等,2008. 华南新元古代玄武质岩石成因与构造意义:从造山运动到陆内裂谷[J]. 地球化学,37(4):382-398
Li X H,Wang X C,Li W X,et al. ,2008. Petrogenesis and tectonic significance of Neoproterozoic basaltic rocks in South China:From orogenesis to intracontinental rifting[J]. Geochimica,37(4):382-398.
Li Z X,Bogdanova S V,Collins A S,et al. ,2008. Assembly,configuration,and break-up history of Rodinia:a synthesis[J]. Precambrian Research,160:179-210.
Liu X C,Li S Z,Jahn B M,2015. Tectonic evolution of the Tongbai-Hong’an orogen in central China:From oceanic subduction/accretion to continent-continent collision[J]. Science China:Earth Sciences,58:1477-1496.
刘述德,曾佐勋,郭瑞禄,等,2021. 扬子陆块北缘花山群:弧后盆地火山-沉积岩系而非蛇绿混杂岩[J]. 地球科学,46(8):2751-2767
Liu S D,Zeng Z X,Guo R L,et al. ,2021. Huashan Group in Northern Margin of Yangtze Block:A Suite of Back-ArcBasin Volcanic-Sedimentary Strata but Not Ophiolite Mélange[J]. Earth Science,46(8):2751-2767.
Liu Y S,Hu Z C,Gao S,et al. ,2008. In situ analysis of major and trace elements of anhydrous minerals by LA−ICP−MS without applying an internal standard[J]. Chemical Geology,257(1~2):34−43.
Ling W L,Gao S,Zhang B R,et al. ,2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton,South China:implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research,122:111-140.
Pearce J A,Norry M J,1979. Petrogenetic implications of Ti,Zr,Y,and Nb variations in volcanic rocks[J]. Contributions to Mineralogy and Petrology,69:33-47.
Pfänder J A,Münker C,Stracke A,et al. ,2007. Nb/Ta and Zr/Hf in ocean island basalts – Implications for crust-mantle differentiation and the fate of Niobium[J]. Earth and Planetary Science Letter,254:158-172.
Qiu X F,Ling W L,Liu X M,et al. ,2011. Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton[J]. Precambrian Research,191:101-119.
Qiu X F,Xu Q,Jiang T,et al. ,2021. Petrogenesis and tectonic significance of the middle Neoproterozoic highly fractionated A-type granite in the South Qinling block[J]. Geological Magazine,158:1891-1910.
邱艳生,杨青雄,邓奇,等,2017. 大洪山花山群中白垩纪基性火山岩的识别及其地质意义[J]. 资源环境与工程,31(2):123-130
Qiu Y S,Yang Q X,Deng Q,et al. ,2017. Recognition and geological significance of basic volcanic rocks in Cretaceous Huashan Group,Dahongshan area[J]. Resources Environment and Engineering,31(2):123-130.
Shervais J W,1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas[J]. Earth and Planetary Science Letter,59:101-118.
Shi Y R,Liu D Y,Zhang Z Q,et al. ,2007. SHRIMP zircon U-Pb dating of gabbro and granite from the Huashan ophiolite,Qinling orogenic belt,China:Neoproterozoic suture on the northern margin of the Yangtze Craton[J]. Acta Geologica Sinica,81(2):239-243.
Sun S S,McDonough W F,1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes [C]. In:Saunders A D,Norry M J,eds. Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42:313−345.
田辉,李怀坤,周红英,等,2017. 扬子板块北缘花山群沉积时代及其对Rodinia超大陆裂解的制约[J]. 地质学报,91(11):2387-2408
Tian H,Li H K,Zhou H Y,et al. ,2017. Depositional age of the Huashan Group on the Northern Margin of the Yangtze Plate and its constraints on breakup of the Rodinia supercontinent[J]. Acta Geologica Sinica,91(11):2387-2408.
Wang J,Li Z X,2003. History of Neoproterozoic rift basins in South China:implications for Rodinia break-up[J]. Precambrian Research,122:141-158.
Wang X C,Li X H,Li W X,et al. ,2007. Ca. 825 Ma komatiitic basalts in South China:first evidence for>1500℃ mantle melts by a Rodinian mantle plume[J]. Geology,35:1103-1106.
Wang X C,Li X H,Li W X,et al. ,2008. The Bikou basalts in northwestern Yangtze Block,South China:remains of 820–810 Ma continental flood basalts[J]. Geological Society of American Bulletin,120:1478-1492.
Wang X C,Li X H,Li W X,et al. ,2009. Variable involvements of mantle plumes in the genesis of mid-Neoproterozoic basaltic rocks in South China:A review[J]. Gondwana Research,15:381-395.
Wang X L,Shu L S,Xing G F,et al. ,2012. Post-orogenic extension in the eastern part of the Jiangnan orogen:Evidence from ca 800–760 Ma volcanic rocks[J]. Precambrian Research,222-223:404-423.
Wang Y J,Zhang A M,Cawood P A,et al. ,2013. Geochronological,geochemical and Nd-Hf-Os isotopic fingerprinting of an early Neoproterozoic arc-back-arc system in South China and its accretionary assembly along the margin of Rodinia[J]. Precambrian Research,231:343-371.
Wang J,Zhou X L,Deng Q,et al. ,2015. Sedimentary successions and the onset of the Neoproterozoic Jiangnan sub-basin in the Nanhua rift,South China[J]. International Journal of Earth Sciences,104:521-539.
Weaver B L,1991. The origin of ocean island basalt end-member compositions:trace element and isotopic constraints[J]. Earth and Planetary Science Letters,104:381-397.
Wu Y B,Zheng Y F,2013. Tectonic evolution of a composite collision orogen:An overview on the Qinling–Tongbai–Hong'an–Dabie–Sulu orogenic belt in central China[J]. Gondwana Research,23:1402-1428.
Xu Y,Yang K G,Polat A,et al. ,2016. The ~860 Ma mafic dikes and granitoids from the northern margin of the Yangtze Block,China:A record of oceanic subduction in the early Neoproterozoic[J]. Precambrian Research,275:310-331.
Yang Z N,Yang K G,Polat A,et al. ,2018. Early crustal evolution of the eastern Yangtze Block:Evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area[J]. Precambrian Research,309:248-270.
张汉金,叶琴,毛新武,等,2013. 湖北省大洪山地区青白口纪花山群沉积特征及其构造古地理意义[J]. 资源环境与工程,27(6):737-740
Zhang H J,Ye Q,Mao X W,et al. ,2013. Sedimentary characteristics and tectonic-paleogeography significance of Huashan Group in Qingbaikou period of Dahong Mountain,Hubei[J]. Resources Environment and Engineering,27(6):737-740.
Zhao J H,Zhou M F,Yan D P,et al. ,2011. Reappraisal of the ages of Neoproterozoic strata in South China:No connection with the Grenvillian orogeny[J]. Geology,39(4):299-302.
Zhao G C,2015. Jiangnan Orogen in South China:Developing from divergent double subduction[J]. Gondwana Research,27:1173-1180.
Zhao G C, Cawood P A, 2012. Precambrian geology of China[J]. Precambrian Research, 222-223: 13-54.
Zheng Y F,Wu R X,Wu Y B,et al. ,2008. Rift melting of juvenile arc-derived crust:Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen,South China[J]. Precambrian Research,163:351-383.
Zhou M F,Yan D P,Kennedy A K,et al. ,2002a. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block,South China[J]. Earth and Planetary Science Letters,196:51-67.
Zhou M F,Kennedy A K,Sun M,et al. ,2002b. Neoproterozoic Arc-Related Mafic Intrusions along the Northern Margin of South China:Implications for the Accretion of Rodinia[J]. The journal of Geology,110:611-618.
Zhou M F,Ma Y,Yan D P,et al. ,2006. The Yanbian Terrane (Southern Sichuan Province,SW China):a Neoproterozoic arc assemblage in the western margin of the Yangtze Block[J]. Precambrian Research,144:19-38.
Zhuo J W,Jiang X S,Wang J,et al. ,2013. Opening time and filling pattern of the Neoproterozoic Kangdian Rift Basin,western Yangtze Continent,South China[J]. Science China Earth Sciences,56(10):1664-1676.
-
附件下载
20220812001-邓奇-附表 -
计量
- 文章访问数: 958
- PDF下载数: 280
- 施引文献: 0