缅甸Wunto-Popa岩浆弧Shangalon铜金矿床辉钼矿Re-Os同位素测年及其地质意义

冷秋锋, 吴松洋, 刘书生, 聂飞, 张彬. 2024. 缅甸Wunto-Popa岩浆弧Shangalon铜金矿床辉钼矿Re-Os同位素测年及其地质意义. 沉积与特提斯地质, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002
引用本文: 冷秋锋, 吴松洋, 刘书生, 聂飞, 张彬. 2024. 缅甸Wunto-Popa岩浆弧Shangalon铜金矿床辉钼矿Re-Os同位素测年及其地质意义. 沉积与特提斯地质, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002
LENG Qiufeng, WU Songyang, LIU Shusheng, NIE Fei, ZHANG Bin. 2024. Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance. Sedimentary Geology and Tethyan Geology, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002
Citation: LENG Qiufeng, WU Songyang, LIU Shusheng, NIE Fei, ZHANG Bin. 2024. Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance. Sedimentary Geology and Tethyan Geology, 44(2): 411-420. doi: 10.19826/j.cnki.1009-3850.2023.09002

缅甸Wunto-Popa岩浆弧Shangalon铜金矿床辉钼矿Re-Os同位素测年及其地质意义

  • 基金项目: 国家自然科学基金重点基金(92055314);东南亚和南亚国际合作地质调查(DD20230127);四川省“天府万人计划”杰出科学家项目(川万人第023号);云南省科学技术奖-杰出贡献奖项目(2017001)
详细信息
    作者简介: 冷秋锋(1986—),博士,从事固体矿产勘查评价与矿床学研究。E-mail:lengqiufeng9@126.com
    通讯作者: 吴松洋(1989—),博士,高级工程师,从事东南亚成矿效应研究。E-mail:songywu@163.com
  • 中图分类号: P618.51;P618.41

Re-Os isotope dating of molybdenite from Shangalon Cu-Au deposit in the Wunto-Popa magmatic arc, Myanmar and its geological significance

More Information
  • Shangalon铜金矿床位于缅甸Wunto-Popa岩浆弧北段,研究工作薄弱,其成矿地质背景和矿床成因尚缺乏高精度同位素成矿年代学数据的制约。本文选取典型矿石中5件辉钼矿样品通过Re-Os同位素定年方法厘定成矿时代,获得的模式年龄集中变化于38.5±0.6至38.3±0.5 Ma,加权平均年龄为38.4±0.2 Ma,对应的等时线年龄为38.0±1.6 Ma(MSWD=0.17),二者在误差范围内基本保持一致,指示Shangalon铜金矿床的成矿时限为始新世,该年龄数据与矿区的含矿闪长岩和花岗闪长岩锆石U-Pb年龄38~40 Ma相吻合,表明Shangalon Cu-Au-Mo成矿作用与始新世闪长岩–花岗闪长岩侵入体密切相关,为始新世岩浆活动的产物。Shangalon铜金矿床辉钼矿样品的Re含量为82.4~111.2 μg·g1,平均值为98.88 μg·g1,指示成矿物质具有壳幔混源的特征。通过综合分析区域成矿动力学背景,认为Shangalon地区始新世铜金成矿作用可能形成于印度与欧亚大陆碰撞背景下的新特提斯洋板片撕裂和断裂,诱发软流圈上涌,新生下地壳部分熔融。

  • 加载中
  • 图 1  缅甸地质构造格架(据Gardiner et al., 2016修改)

    Figure 1. 

    图 2  Shangalon铜金矿区地质图(据Mitchell, 2018修改)

    Figure 2. 

    图 3  Shangalon铜金矿床辉钼矿与黄铜矿共生(a)及与斑铜矿–黄铁矿共生(b)

    Figure 3. 

    图 4  Shangalon矿床辉钼矿Re-Os同位素加权平均年龄(a)和等时线年龄(b)

    Figure 4. 

    图 5  Shangalon矿床成矿动力学模型(据Li et al, 2018修改)

    Figure 5. 

    表 1  Shangalon矿床辉钼矿Re-Os同位素测试数据

    Table 1.  Analytical data of Re-Os isotope from the Shangalon deposit

    样品编号样重/gRe/ ng·g1普Os/ ng·g1187Re/ ng·g1187Os/ ng·g1模式年龄/Ma
    测定值不确定度测定值不确定度测定值不确定度测定值不确定度测定值不确定度
    D10-b20.01001969697600.00060.02006094747838.970.2638.360.55
    D10-b10.015431032598390.00070.01526490052741.600.2538.460.54
    D10-b30.015341005507560.00070.01486319847540.320.2638.280.53
    D10-b40.0150411120210000.00070.01526989362844.670.2738.350.56
    D10-b50.01510824346140.00070.00885181238633.210.1938.470.53
     注:Re、Os含量的不确定度包括样品和稀释剂的称量误差、稀释剂的标定误差、质谱测量的分馏校正误差、待分析样品同位素比值测量误差,置信水平95%;由于采用混合稀释剂,模式年龄的不确定度不包括稀释剂和样品的称量误差,但依然包括衰变常数的不确定度1.02%,模式年龄置信水平95%。
    下载: 导出CSV
  • [1]

    Barber A J, Khin Zaw, Crow M J. et al., 2016. Myanmar: Geology, Resources and Tectonics[M]. The Geological Society, London.

    [2]

    Barley M E., Pickard A L, Zaw K, et al., 2003. Jurassic to Miocene magmatism and metamorphism in the Mogok metamorphic belt and the India − Eurasia collision in Myanmar[J]. Tectonics, 22(3): 1 − 11

    [3]

    Barley M E, Zaw K, 2009. SHRIMP U − Pb in zircon geochronology of granitoids from Myanmar: temporal constraints on the tectonic evolution of Southeast Asia[C]. EGU Gen. Assembly Conf. Abstracts , 11: 3842.

    [4]

    Bertrand G, Rangin C, Maluski H, et al., 2001. Diachronous cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): the trace of the northward migration of the Indian syntaxis[J]. Journal of Asian Earth Sciences, 19: 649 − 659.

    [5]

    Bertrand G, Rangin C, 2003. Tectonics of the western margin of the Shan plateau (Central Myanmar), implications for the India–Indochina oblique convergence since Oligocene[J]. Journal of Asian Earth Sciences, 21: 1139-1157. doi: 10.1016/S1367-9120(02)00183-9

    [6]

    Berzina A N, Sotnikov V I, Economou-Eliopoulos, M. et al. , 2005. Distribution of rhenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia[J]. Ore Geology Reviews, 26(1-2): 91-113. doi: 10.1016/j.oregeorev.2004.12.002

    [7]

    Bohlkea J K, Laeter J R , Bievre P D, et al. , 2001. Isotopic compositions of the elements[J]. Journal of Physical and Chemical Reference Data, 34(1): 57-67.

    [8]

    Chapman J B, Kapp P, 2017. Tibetan Magmatism Database[J]. Geochemistry, Geophysics, Geosystems, 18(11): 4229–4234.

    [9]

    Christophe V, Socquet A, Rangin C, et al., 2003. Present − day crustal deformation around Sagaing fault, Myanmar[J]. Journal of Geophysical Research, 108: 1 − 10.

    [10]

    Ding L, Maksatbek S, Cai F L, et al., 2017. Processes of initial collision and suturing between India and Asia[J]. Science China − Earth Sciences. 60 (4): 635–651.

    [11]

    Du A D, Wu S Q, Sun D Z, et al. , 2004. Preparat ion and cert if icat ion of Re-Os dating reference materials: Molybdenite HLP and JDC[J]. Geostandard and Geoanalytical Research, 28(1): 41-52. doi: 10.1111/j.1751-908X.2004.tb01042.x

    [12]

    Foster J G, Lambert D D, Frick L P, 1996. Re-Os isotopic evidence for genesis of Archaean nickel ores from uncontaminated komatiites[J]. Nature, 382: 703-706. doi: 10.1038/382703a0

    [13]

    Holt W E, Ni J F, Wallace T C, et al., 1991. The active tectonics of the eastern Himalayan Syntaxis and surrounding regions[J]. Geophysical Research Letters, 96(14): 595 − 632.

    [14]

    Huang X, Qi L, Gao J, et al., 2021. Re − Os dating of molybdenite via improved alkaline fusion[J]. Journal of Analytical Atomic Spectrometry 36: 64 − 69.

    [15]

    Htut T H, Qin K Z, Li G M, et al., 2017. Transition from High Sulfidation Epithermal Au to Porphyry Cu system and associated magmatism, Shangalon − Maharsan area, north − central Wuntho − Popa Arc, Myanmar[J]. SEG 2017 Conf: 222.

    [16]

    Htut T H, Qin K Z, Li G M, et al. , 2020. Eocene arc magmatism and related Cu-Au (Mo) mineralization in the Shangalon-Kyungalon district, Wuntho-Popa Arc, northern Myanmar[J]. Ore Geology Reviews, 125: 1-16.

    [17]

    Gardiner N J, Robb L J and Searle M P, 2014. The metallogenic provinces of Myanmar[J]. Applied Earth Science, 123: 25-38. doi: 10.1179/1743275814Y.0000000049

    [18]

    Gardiner, N. J. , Searle, M. P. , Robb, L. J. , et al. , 2015. Neo-Tethyan magmatism and metallogeny in Myanmae-an Andean analogue[J]. Journal of Asian Earth Sciences, 106: 197-215. doi: 10.1016/j.jseaes.2015.03.015

    [19]

    Gardiner N J, Robb L J, Morley C K, et al., 2016. The tectonic and metallogenic framework of Myanmar: a Tethyan mineral system[J]. Ore Geology Reviews. 79: 26 − 45.

    [20]

    Gardiner N J, Hawkesworth C J, Robb L J, et al., 2017. Contrasting granite metallogeny through the Zircon record: a case study from Myanmar[J]. Scientific Reports. 7(1): 1 − 9

    [21]

    Gardiner, N. J. , Searle, M. P. , Morley, C. K. , et al. , 2018. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications[J]. Gondwana Research, 62: 27-60 doi: 10.1016/j.gr.2018.02.008

    [22]

    Goossens P, 1978. The metallogenic provinces of Burma: their definitions, geologic relationships and extension into China, India and Thailand[C]. Third Regional Conference on Geology and Mineral Resources of Southeast Asia.

    [23]

    Jiang Z Q, Wang Q, Li Z X, et al., 2012. Late Cretaceous (ca. 90Ma) adakitic intrusive rocks in the Kelu area, Gangdese Belt (southern Tibet): slab melting and implications for Cu − Au mineralization[J]. Journal of Asian Earth Sciences. 53: 67 − 81.

    [24]

    Lang X H, Tang J X, Li Z J, et al., 2014. U − Pb and Re − Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC[J]. Journal of Asian Earth Sciences. 79: 608–622.

    [25]

    Lee, H. Y. , Chung, S. L. , Yang, H. M. , 2016. Late Cenozoic volcanism in central Myanmar: geochemical characteristics and geodynamic significance[J]. Lithos, 245: 174-190. doi: 10.1016/j.lithos.2015.09.018

    [26]

    Leng, Q. F. , Chen, Y. C. , Tang, J. X. , 2015. Re-Os Dating of Molybdenite from the Lakange Porphyry Cu-Mo Deposit in Tibet and its Geological Significance[J]. Geology in China, 42(2): 570-584 (in Chinese with English abstract).

    [27]

    Li, J. X. , Zhang, L. Y. , Fan, W. M. , 2018. Mesozoic-Cenozoic tectonic evolution and metallogeny in Myanmar: Evidence from zircon/cassiterite U-Pb and molybdenite Re–Os geochronology[J]. Ore Geology Reviews, 102: 829-845. doi: 10.1016/j.oregeorev.2018.10.009

    [28]

    Lin T H, Chung S L, Kumar A, et al., 2013. Linking a prolonged Neo − Tethyan magmatic arc in South Asia: Zircon U − Pb and Hf isotopic constraints from the Lohit Batholith, NE India[J]. Terra Nova 25 (6): 453 − 458.

    [29]

    Ludwig K R, 2009. Isoplot/Ex, version 2.0: a geochronogical toolkit for Microsoft Excel. Geochronology Center

    [30]

    Mao J W, Zhang Z C, Zhang Z H, et al., 1999. Re − Os isotopic dating of molybdenites in the Xiaoliugou W ( Mo) deposit in the northern Qilian Mountains and its geological significance[J]. Geochimica et Cosmochimica Acta, 63(11 − 12): 1815 − 1818.

    [31]

    Mao J W, Du A D, Seltmann R, et al., 2003. Re − Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia[J]. Mineralium Deposita, 38: 251 − 257.

    [32]

    Martin C E, Carlson R W, Shirey S B, et al., 1994. Os isotopic variation in basalts from Haleakala Volcano, Maui, Hawaii: a record of mamgmatic processes in oceanic mantle and crust[J]. Earth and Planetary Science Letters, 128: 287 − 301.

    [33]

    Maury R C, Pubellier M, Rangin C, et al., 2004. Quaternary calc − alkaline and alkaline volcanism in an hyper − oblique convergence setting, central Myanmar and western Yunnan[J]. Bulletin De La Societe Geologique De France 175 (5): 461 − 472.

    [34]

    Meng F Y, Zhao Z, Zhu D C, et al., 2014. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: products of back-arc extension of Neo-Tethyan Ocean? [J]. Gondwana Research. 26 (2): 505–520.

    [35]

    Metcalfe I, 2013. Gonawana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of Asian Earth Sciences, 66, 1 − 33.

    [36]

    Mitchell, A. H. G. , 1993. Cretacelus-Cenozoic tectonic events in the western Myanmar(Burma) Assam Region[J]. Journal of the Geological Society, 150: 1089-1102. doi: 10.1144/gsjgs.150.6.1089

    [37]

    Mitchell, A. H. G. , Myint, W. , Lynn, K. , et al. , 2011. Geology of the high sulfidation copper deposits, Monywa mine, Myanmar[J]. Resource Geology, 61(1): 1-29. doi: 10.1111/j.1751-3928.2010.00145.x

    [38]

    Mitchell A. H. G. , Chung S. L. , Oo T. , et al. , 2012. Zircon U-Pb ages in Myanmar: Magmaticmetamorphic events and the closure of a neo-Tethys ocean? [J]. Journal of Asian Earth Sciences, 56: 1-23. doi: 10.1016/j.jseaes.2012.04.019

    [39]

    Mitchell A H G., 2018. Geological Belts, Plate Boundaries, and Mineral Deposits in Myanmar[M]. Elsevier, 1 − 509.

    [40]

    Morley, C. K. , 2012. Late Cretacelus-Early Palaeogene tectonic development of SE Asia[J]. Earth-Science Reviews, 115: 37-75. doi: 10.1016/j.earscirev.2012.08.002

    [41]

    Metcalfe I. 2002. Permian tectonic framework and palaeogeography of SE Asia[J]. Journal of Asian Earth Sciences, 20: 551 − 566.

    [42]

    Myint, A. Z. , Zaw, K. , Swe, Y. M. , et al. , 2017. Geochemistry and geochronology of granites hosting the Mawchi Sn-W deposit, Myanmar: implications for tectonic setting and emplacement[J]. Geological Society of London, 48(1): 385-400. doi: 10.1144/M48.17

    [43]

    Myint, A. Z. , Yonezu, K. , Boyce, A. J. , et al. , 2018. Stable isotope and geochronological study of the Mawchi Sn-W deposit, Myanmar: implications for timing of mineralization and ore genesis[J]. Ore Geology Reviews, 95: 663-679. doi: 10.1016/j.oregeorev.2018.03.014

    [44]

    Searle M P, Noble S R, Cottle J M, et al., 2007. Tectonic evolution of the Mogok metamorphic belt, Burma (Myanmar) constrained by U − Th − Pb dating of metamorphic and magmatic rocks[J]. Tectonics, 26 (3): 1 − 24

    [45]

    Searle, M. P. , Robb, L. J. , Gardiner, N. J. , 2016. Tectonic processes and metallogeny along the Tethyan mountaion ranges of the Middle East and South Asia (Oman, Himalaya, Karakoram, Tibet, Myanmar, Thailand, Malaysia) [J]. Society of Economic Geologist, Special Publication, 19: 301-327.

    [46]

    Searle, M. P. , Morley, C. K. , Waters, D. J. , et al. , 2017. Tectonic and metamorphic evolution of the Mogok Metamorphic and Jade Mines belts and ophiolitic terranes of Burma (Myanmar) [J]. Geological Society of London, 48 (1): 261–293. doi: 10.1144/M48.12

    [47]

    Shen, J. J. , Papanastassiou, D. A. , and Wasserburg, G. J. , 1996. Precise Re-Os determinations and systematics of iron meteorites[J]. Geochimica et Cosmochimica Acta, 60: 2887-2900. doi: 10.1016/0016-7037(96)00120-2

    [48]

    Smoliar, M. I. , Walker, R. J. and Morgan, J. W. , 1996. Re-Os ages of group ⅡA, ⅢA, ⅣA and ⅥB iron meteorites[J]. Science, 271: 1099-1102. doi: 10.1126/science.271.5252.1099

    [49]

    Suzuki, K. , Shimizu, H. , Masuda, A. , 1996. Re-Os dating of molybdenites from ore deposits in Japan: Implication for the closure temperature of the Re-Os syatem for molybdenite and cooling history of molybdenum ore deposits[J]. Geochimica et Cosmochimica Acta, 60(16): 3151-3159. doi: 10.1016/0016-7037(96)00164-0

    [50]

    Stein H J, Markey R J , Morgan J W, et al., 2001. The remarkable Re − Os chronometer in molybdenite: How and why it works[J]. Terra Nova, 13(6): 479 − 486.

    [51]

    Wang J G, Wu F Y, Tan X C, et al., 2014. Magmatic evolution of the Western Myanmar Arc documented by U − Pb and Hf isotopes in detrital zircon[J]. Tectonophysics, 612–613: 97–105.

    [52]

    Wen, D. R. , Liu, D. Y. , Chung, S. L. , et al. , 2008. Zircon SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet[J]. Chemical Geology, 252(3–4): 191–201. doi: 10.1016/j.chemgeo.2008.03.003

    [53]

    Wieser, M. E. , 2006. Atomic weights of the elements 2005[J]. Pure and Applied Chemistry, 78(11): 2051-2066. doi: 10.1351/pac200678112051

    [54]

    Wu, F. Y. , Ji, W. Q. , Wang, J. G. , et al. , 2014. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision[J]. American Journal of Science, 314 (2): 548–579. doi: 10.2475/02.2014.04

    [55]

    Zaw, K. , 1990. Geological, petrogical and geochemical characteristics of granitoid rocks in Burma: with special reference to the associated W-Sn mineralization and their tectonic setting[J]. Journal of Southeast Asian Earth Sciences, 4(4): 293-335. doi: 10.1016/0743-9547(90)90004-W

    [56]

    Zaw, K. , Meffre, S. , Lai, C. K. , et al. , 2014. Tectonics and metallogeny of mainland Southeast Asia-a review and contribution[J]. Gondwana Research, 26(1): 5-30. doi: 10.1016/j.gr.2013.10.010

    [57]

    Zaw, K. , 2017. Overview of mineralization styles and tectonic-metallogenic setting in Myanmar[J]. Geological Society of London, 48(1): 531-556. doi: 10.1144/M48.24

    [58]

    Zhang, P. , Mei, L. F. , Hu, X. L. , et al. , 2017. Structures, uplift, and magmatism of the Western Myanmar Arc: constraints to mid-Cretaceous-Paleogene tectonic evolution of the western Myanmar continental margin[J]. Gondwana Research, 52: 18–38. doi: 10.1016/j.gr.2017.09.002

    [59]

    蒋少涌, 杨竞红, 赵葵东, 等. 2000. 金属矿床Re − Os同位素示踪与定年研究[J]. 南京大学学报(自然科学版), 30(6): 669 − 677

    Jiang S Y, Yang J H, Zhao K D, et al., 2000. Re − Os isotope tracer and dating methods in ore deposits research[J]. Journal of Nanjing University (Natural Sciences), 30(6): 669 − 677(in Chinese with English abstract).

    [60]

    冷秋锋, 陈毓川, 唐菊兴, 等. 2015. 西藏拉抗俄斑岩铜钼矿床辉钼矿Re-Os同位素测年及其地质意义[J]. 中国地质, 42(2): 570 − 584.

    Leng Q F, Tang J X, Zheng W B, et al., 2016. Zircon U-Pb and Molybdenite Re-Os Ages of the Lakange Porphyry Cu-Mo Deposit, Gangdese Porphyry Copper Belt, Southern Tibet, China[J]. Resource Geology, 66(2): 163 − 182 (in Chinese with English abstract).

    [61]

    李超, 屈文俊, 杜安道, 等. 2012. 含有普通锇的辉钼矿Re − Os同位素定年研究[J]. 岩石学报, 28(2): 702 − 708

    Li C, Qu W J, Du A D, et al., 2012. Study on Re − Os isotope in molybdenite containing common Os[J]. Acta Petrologica Sinica, 28(2): 702 − 708 (in Chinese with English abstract).

    [62]

    李光明, 张林奎, 吴建阳, 等. 2020. 青藏高原南部洋板块地质重建及科学意义[J]. 沉积与特提斯地质, 40(1): 1 − 14

    Li G M, Zhang L K, Wu J Y, et al., 2020. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China[J]. Sedimentary Geology and Tethyan Geology, 40(1): 1 − 14(in Chinese with English abstract).

    [63]

    刘俊, 祝向平, 李文昌, 等. 2019. 藏东拉荣斑岩钨钼矿床辉钼矿Re − Os定年及地质意义[J]. 地质学报, 93(7): 1708 − 1719

    Liu J, Zhu X P, Li W C, et al., 2019. Molybdnite Re − Os dating of the Larong porphyry W − Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 93(7): 1708 − 1719 (in Chinese with English abstract).

    [64]

    王登红, 陈郑辉, 陈毓川, 等. 2010. 我国重要矿产地成岩成矿年代学研究新数据[J]. 地质学报, 2010, 07: 1030 − 1040

    Wang D H, Chen Z H, Chen Y C, et al., 2010. New Data of the Rock − Forming and Ore − Forming Chronology for China's Important Mineral Resources Areas[J]. Acta Geologica Sinica, 7: 1030 − 1040 (in Chinese with English abstract).

    [65]

    王宏, 林方成, 李兴振, 等. 2012. 缅甸中北部及邻区构造单元划分及新特提斯构造演化[J]. 中国地质, 39(4): 912 − 922

    Wang H, Lin F C, Li X Z, 2012. Tectonic unit division and Neo − Tethys tectonic evolution in north − central Myanmar and its adjacent areas[J]. China Geology, 39(4): 912 − 922 (in Chinese with English abstract).

    [66]

    尹福光, 潘桂棠, 孙志明. 2021. 西南三江构造体系及演化、成因[J]. 沉积与特提斯地质, 40(2): 265 − 282

    Yin F G, Pan G T, Sun Z M, 2021. Genesis and evolution of the structural systems during the cenozoic in the Sanjiang orogenic belt, Southwest China[J]. Sedimentary Geology and Tethyan Geology, 40(2): 265 − 282 (in Chinese with English abstract).

    [67]

    张靖祎, 彭头平, 范蔚茗, 等. 2021. 缅甸密支那早白垩世钾玄质岩石成因及其大地构造意义[J]. 大地构造与成矿学, 45(3): 553 − 569

    Zhang J Y, Peng T P, Fan W M, 2021. Petrogenesis of the Early Cretaceous Shoshonitic Rocks in Myitkina of Myanmar and its Tectonic Implications[J]. Geotectonica et Metallogenia, 45(3): 553 − 569 (in Chinese with English abstract).

  • 加载中

(5)

(1)

计量
  • 文章访问数:  287
  • PDF下载数:  268
  • 施引文献:  0
出版历程
收稿日期:  2023-05-12
修回日期:  2023-07-19
录用日期:  2023-07-21
刊出日期:  2024-06-30

目录