滇西北浪都夕卡岩矿床致矿岩体的岩石地球化学、年代学、Sr-Nd-Pb同位素组成及其地质意义

莫雷, 沈啟武, 陈喜连, 吴练荣, 张传昱, 董桥峰, 苏肖宇, 施宝生, 余海军, 冷成彪. 2024. 滇西北浪都夕卡岩矿床致矿岩体的岩石地球化学、年代学、Sr-Nd-Pb同位素组成及其地质意义. 沉积与特提斯地质, 44(2): 421-436. doi: 10.19826/j.cnki.1009-3850.2023.11004
引用本文: 莫雷, 沈啟武, 陈喜连, 吴练荣, 张传昱, 董桥峰, 苏肖宇, 施宝生, 余海军, 冷成彪. 2024. 滇西北浪都夕卡岩矿床致矿岩体的岩石地球化学、年代学、Sr-Nd-Pb同位素组成及其地质意义. 沉积与特提斯地质, 44(2): 421-436. doi: 10.19826/j.cnki.1009-3850.2023.11004
MO Lei, SHEN Qiwu, CHEN Xilian, WU Lianrong, ZHANG Chuanyu, DONG Qiaofeng, SU Xiaoyu, SHI Baosheng, YU Haijun, LENG Chengbiao. 2024. Petrogeochemistry, chronology, Sr-Nd-Pb isotopic compositions, and geological significance of the ore-causative intrusion in the Langdu skarn deposit, northwest Yunnan. Sedimentary Geology and Tethyan Geology, 44(2): 421-436. doi: 10.19826/j.cnki.1009-3850.2023.11004
Citation: MO Lei, SHEN Qiwu, CHEN Xilian, WU Lianrong, ZHANG Chuanyu, DONG Qiaofeng, SU Xiaoyu, SHI Baosheng, YU Haijun, LENG Chengbiao. 2024. Petrogeochemistry, chronology, Sr-Nd-Pb isotopic compositions, and geological significance of the ore-causative intrusion in the Langdu skarn deposit, northwest Yunnan. Sedimentary Geology and Tethyan Geology, 44(2): 421-436. doi: 10.19826/j.cnki.1009-3850.2023.11004

滇西北浪都夕卡岩矿床致矿岩体的岩石地球化学、年代学、Sr-Nd-Pb同位素组成及其地质意义

  • 基金项目: 第二次青藏高原综合科学考察研究(2021QZKK0301);国家自然科学基金项目(42102098,42173026);云南迪庆有色金属责任公司科研项目(DQYS-SCB-08-(2022)031);东华理工大学研究生创新基金(YC2023-S550)
详细信息
    作者简介: 莫雷(1999—),男,地质资源与地质工程专业硕士研究生,主要从事矿床学研究工作。E-mail:519905629@qq.com
    通讯作者: 沈啟武(1978—),男,主要从事矿床学研究工作。E-mail:1423229078@qq.com
  • 中图分类号: P618.41

Petrogeochemistry, chronology, Sr-Nd-Pb isotopic compositions, and geological significance of the ore-causative intrusion in the Langdu skarn deposit, northwest Yunnan

More Information
  • 滇西北浪都侵入岩体位于义敦岛弧南段的中甸弧,在空间上属浪都夕卡岩型铜矿床的致矿岩体。本文以浪都致矿岩体中石英二长斑岩为对象,对其开展了锆石SIMS(二次离子质谱)U-Pb定年、岩石地球化学和Sr-Nd-Pb同位素研究。锆石U-Pb定年结果显示浪都石英二长斑岩的成岩年龄为219.2±1.8 Ma(2σ,MSWD=1.3,n = 13),与中甸弧中晚三叠世侵入岩体成岩年龄基本一致。浪都石英二长斑岩具有中等SiO2含量(w(SiO2) 为 60.42%~66.44%),高Al2O3w(Al2O3)为14.56%~16%)和高K2O(w(K2O)为3.49%~4.49%)含量,以富集LREE和Rb、Ba、Sr等大离子亲石元素,相对亏损HREE和Ta、Nb、Ti等高场强元素为特征,在化学成分上属于高钾钙碱性系列。此外,浪都石英二长斑岩的87Sr/86Sr初始值为0.7054~0.7061,εNd(t)值为-3.5~-2.5,且所有样品在Pb同位素构造模式图上均落在造山带演化线附近。结合浪都石英二长斑岩的成岩时代、岩石化学和同位素特征,本文认为浪都致矿岩体形成于晚三叠世甘孜−理塘洋壳西向俯冲增生的构造背景,是交代地幔部分熔融形成的熔体在上升过程中受到下地壳物质混染,并经历分离结晶作用形成的产物。浪都石英二长斑岩的高Sr/Y比值和高V/Sc比值,指示岩浆具有高含量H2O和较高的氧逸度,是该区斑岩−夕卡岩铜矿床形成的关键。

  • 加载中
  • 图 1  中甸地区大地构造位置(a)(改自金灿海等,2013;Ⅰ—扬子陆块;Ⅱ—甘孜−理塘板块结合带;Ⅲ—义敦岛弧带;Ⅳ—中咱微陆块;Ⅴ—金沙江结合带;Ⅵ—江达−维西火山弧;Ⅶ—羌塘−昌都陆块),中甸地区地质图(b)(改自任涛等,2011)以及浪都岩体地质简图(c)(改自任涛等,2011

    Figure 1. 

    图 2  浪都致矿岩体及普朗雪鸡坪斑岩TAS图解(a)(底图据Middlemost, 1994; 碱度分界线据Irvine et al., 1971),K2O-Na2O图解(b)(底图据Middlemost, 1972),K2O-SiO2图解(c)(实线据Peccerillo and Taylor, 1976; 虚线据Middlemost, 1985)和A/NK-A/CNK图解(d)(底图据Maniar and Piccoli, 1989

    Figure 2. 

    图 3  浪都致矿岩体及普朗雪鸡坪斑岩Harker图解

    Figure 3. 

    图 4  浪都致矿岩体及普朗雪鸡坪斑岩稀土元素配分模式图(球粒陨石标准化数据来自Sun and McDonough, 1989)(a)和浪都致矿岩体及普朗雪鸡坪斑岩微量元素蛛网图(b)(原始地幔标准化数据来自Sun and McDonough, 1989

    Figure 4. 

    图 5  锆石U-Pb年龄谐和图(a)和锆石U-Pb年龄加权平均图(b)

    Figure 5. 

    图 6  εNd(t)–ISr图解(a)和εNd(t)–TDM图解(b)

    Figure 6. 

    图 7  208Pb/204Pb–206Pb/204Pb构造模式图(a)和207Pb/204Pb–206Pb/204Pb构造模式图(b)

    Figure 7. 

    图 8  Nb–Y判别图(a)和Rb–(Y+Nb)判别图(b)

    Figure 8. 

  • [1]

    Ariadni A Georgatou,Massimo C,2020. Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks[J]. Solid Earth,11:1 − 21. doi: 10.5194/se-11-1-2020

    [2]

    Cao K,Yang Z M,Noel C,et al.,2022. Generation of the giant porphyry Cu-Au deposit by repeated recharge of mafic magmas at Pulang in eastern Tibet[J]. Economic Geology,117:57 − 90. doi: 10.5382/econgeo.4860

    [3]

    曹康,许继峰,陈建林,等,2014. 云南普朗超大型斑岩铜矿床含矿斑岩成因及其成矿意义[J]. 矿床地质,33(2):307 − 322.

    Cao K,Xu J F,Chen J L,et al.,2014. Origin of porphyry intrusions hosting superlarge Pulang porphyry copper deposit in Yunnan Province:Implications for metallogenesis[J]. Mineral Deposits,33(2): 307 − 322 (in Chinese with English abstract).

    [4]

    曹晓民,董涛,余海军,等,2022. 滇西北香格里拉市格咱铜多金属矿集区地质演化与成矿作用[J]. 沉积与特提斯地质,42(1):50 − 61.

    Cao X M,Dong T,Yu H J,2022. Geological evolution and metallogenesis of the Geza copper polymetallic mineral concentration district,Shangri-La,Southwest Yunnan[J]. Sedimentary Geology and Tethyan Geology,42(1):50 − 61 (in Chinese with English abstract).

    [5]

    Chen B,He J B,Chen C J,et al.,2013. Nd-Sr-Os isotopic data of the Baishiquan mafic-ultramafic complex from east Tianshan,and implications for petrogenesis[J]. Acta Petrologica Sinica,29:294 − 302.

    [6]

    Chen B,Jahn B W,Wilde S,et al.,2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia,China:Petrogenesis and tectonic implications[J]. Tectonophysics,328(1-2):157 − 187. doi: 10.1016/S0040-1951(00)00182-7

    [7]

    Chen J L,Xu J F,Wang B D,et al.,2015. Geochemical differences between subduction-and collision-related copper-bearing porphyries and implications for metallogenesis[J]. Ore Geology Reviews,70:424 − 437. doi: 10.1016/j.oregeorev.2015.01.011

    [8]

    陈建林,许继峰,任江波,等,2011. 俯冲型和碰撞型含矿斑岩地球化学组成的差异[J]. 岩石学报,27(9):2733 − 2742.

    Chen J L,Xu J F,Ren J B,et al.,2011. Geochemical differences between the subduction- and coilisionaitype ore-bearing porphyric rocks[J]. Acta Petrologica Sinica,27(9):2733 − 2742 (in Chinese with English abstract).

    [9]

    Chen Q,Wang C M,Du B,et al.,2021. Petrogenesis of the Late Triassic Biluoxueshan granitic pluton,SW China:Implications for the tectonic evolution of the Paleo-Tethys Sanjiang Orogen[J]. Journal of Asian Earth Sciences,211:104700.

    [10]

    Chen X L,Leng C B,Zou S H,et al.,2021. Geochemical compositions of apatites from the Xuejiping and Disuga porphyries in Zhongdian arc:Implications for porphyry Cu mineralization[J]. Ore Geology Reviews,130:103954. doi: 10.1016/j.oregeorev.2020.103954

    [11]

    陈振武,丁昕,于慧敏,等,2019. 中国东部新生代玄武岩指示地幔部分熔融过程中铁−钒同位素分馏[C]//中国矿物岩石地球化学学会. 中国矿物岩石地球化学学会第17届学术年会论文摘要集(pp. 400).

    Chen Z W,Ding X,Yu H M,et al.,2019. Fe-vanadium isotope fractionation during Cenozoic indicative mantle partial melting in eastern China [C]// China Mineralogical, Petrogeochemical Society. Abstracts of the 17th Annual Conference of Mineralogy,Petrology and Geochemistry Society of China (pp. 400) (in Chinese with English abstract).

    [12]

    Core D P,Kesler S E,Essene E J,2006. Unusually Cu-rich magmas associated with giant porphyry copper deposits:Evidence from Bingham,Utah[J]. Geology,34:41 − 44.

    [13]

    代堰锫,李同柱,张惠华,2021. 扬子陆块西缘江浪穹窿超基性岩的成因:锆石U-Pb定年、岩石地球化学及Sr-Nd同位素[J]. 沉积与特提斯地质,41(4):573 − 584.

    Dai Y P,Li T Z,Zhang H H,2021. Petrogenesis of the ultramafic pluton in the Jianglang dome, western margin of the Yangtze block: Zircon U-Pb dating, geochemistry and Sr-Nd isotopes[J]. Sedimentary Geology and Tethyan Geology,41(4):573 − 584 (in Chinese with English abstract).

    [14]

    Deng C,Frances E J,Wan B,et al.,2022. The influence of ridge subduction on the geochemistry of Vanuatu arc magmas[J]. Journal of Geophysical Research:Solid Earth(1):127.

    [15]

    Deng J,Wang Q F,Li G J,et al.,2014. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China[J]. Gondwana Research,26:419 − 437. doi: 10.1016/j.gr.2013.08.002

    [16]

    董涛,余海军,段召艳,等,2020. 云南香格里拉盖吉夏含矿石英二长闪长玢岩年代学、地球化学、锆石Hf同位素特征及其地质意义[J]. 岩石学报,36(5):1369 − 1388. doi: 10.18654/1000-0569/2020.05.04

    Dong T,Yu H J,Duan Z Y,et al.,2020. Geochronology,geochemistry,and zircon Hf isotope characteristics and their geological significances of the Gaijixia ore-bearing intrusive rocks in the Shangri-La region,NW Yunnan,SW China[J]. Acta Petrologica Sinica,36(5):1369 − 1388 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.05.04

    [17]

    Ducea M N,Saleeby J B,Bergantz G,2015. The architecture,chemistry,and evolution of continental magmatic arcs[J]. Annual Review of Earth and Planetary Sciences,43(1):299 − 331. doi: 10.1146/annurev-earth-060614-105049

    [18]

    Evans K A,2012. The redox budget of subduction zones[J]. Earth-Science Reviews,113(1-2):11 − 32. doi: 10.1016/j.earscirev.2012.03.003

    [19]

    Eyal M,Litvinovsky B A,Katzir Y,et al.,2005. The Pan-African high-K calc-alkaline peraluminous Elat granite from southern Israel:geology,geochemistry and petrogenesis[J]. Journal of African Earth Sciences,40:115 − 136.

    [20]

    Gao X,Yang L Q,Orovan E A,2018. The lithospheric architecture of two subterranes in the eastern Yidun Terrane,East Tethys:Insights from Hf-Nd isotopic mapping[J]. Gondwana Research,62:127 − 143. doi: 10.1016/j.gr.2018.02.010

    [21]

    Hollings P,Cooke D R,Clark A,2005. Regional geochemistry of Tertiary igneous rocks in Central Chile:implications for the geodynamic environment of giant porphyry copper and epithermal gold mineralization[J]. Economic Geology,100:887 − 904. doi: 10.2113/gsecongeo.100.5.887

    [22]

    Hou Z Q,Yang Y Q,Lü Y J,et al.,2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones[J]. Geology,43(3):643 − 650.

    [23]

    侯增谦,杨岳清,曲晓明,等,2004. 三江地区义敦岛弧造山带演化和成矿系统[J]. 地质学报,78(1):109 − 120.

    Hou Z Q,Yang Y Q,Qu X M,et al.,2004. Tectonic evolution and mineralization systems of the Yidun arc orogen in Sanjiang region,China[J]. Acta Geologica Sinica,78(1):109 − 120 (in Chinese with English abstract).

    [24]

    黄肖潇,许继峰,陈建林,等,2012. 中甸岛弧红山地区两期中酸性侵入岩的年代学、地球化学特征及其成因[J]. 岩石学报,28(5):1493 − 1506.

    Huang X X,Xu J F,Chen J L,et al.,2012. Geochronology,geochemistry and petrogenesis of two periods of intermediate-acid intrusive rocks from Hongshan area in Zhongdian arc[J]. Acta Petrologica Sinica,28(5):1493 − 1506 (in Chinese with English abstract).

    [25]

    Irvine T N,Baragar W R A,1971. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences,8(5):523 − 548. doi: 10.1139/e71-055

    [26]

    Jahn B M,Windley B,Natalin B,et al.,2004. Phanerozoic continental growth in Central Asia[J]. Journal of Asian Earth Sciences,23(5):599 − 603. doi: 10.1016/S1367-9120(03)00124-X

    [27]

    王忠强,李超,江小均,等,2020. 滇西北休瓦促钼钨矿床白钨矿原位微量和Sr同位素特征及其对成矿作用的指示[J]. 岩矿测试,39(5):762 − 776.

    Wang Z Q,Li C,Jiang X J,et al.,2020. In situ trace element and Sr isotope composition of scheelite in the Xiuwacu molybdenum-tungsten deposit,northwest Yunnan:Constraints on mineralization[J]. Rock and Mineral Analysis,39(5):762 − 776 (in Chinese with English abstract).

    [28]

    金灿海,范文玉,张玙,等,2013. 中甸浪都铜矿区二长斑岩中锆石的微量元素组成、U-Pb年龄及地质意义[J]. 大地构造与成矿学,37(2):262 − 272.

    Jin C H,Fan W Y,Zhang Y,et al.,2013. Trace element composition and U-Pb chronology of zircons in monzonite porphyry from the Langdu copper deposit in Zhongdian and Their Geological Significance[J]. Geotectonica et Metallogenia,37(2):262 − 272 (in Chinese with English abstract).

    [29]

    Kovalenko V L,Yarmolyuk V V,Kovach V P,et al.,2004. Isotope provinces,mechanisms of generation and sources of the continental crust in the Central Asian mobile belt:Geological and isotopic evidence[J]. Journal of Asian Earth Sciences,23(5):605 − 627. doi: 10.1016/S1367-9120(03)00130-5

    [30]

    Leng C B,Gao J F,Chen W T,et al.,2018. Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J]. Economic Geology,113(0):1077 − 1092.

    [31]

    Leng C B,Huang Q Y,Zhang X C,et al.,2014. Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc,SW China:Constraints from the geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J]. Lithos 190-191,363 − 382.

    [32]

    Leng C B,Zhang X C,Hu R Z,et al.,2012. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,Northwest Yunnan,China[J]. Journal of Asian Earth Sciences,60:31 − 48. doi: 10.1016/j.jseaes.2012.07.019

    [33]

    冷成彪,2009. 滇西北雪鸡坪斑岩铜矿地质背景及矿床地球化学特征研究[D]. 中国科学院研究生院.

    Leng C B,2009. Ore deposit geochemistry and regional geological setting of the Xuejiping porphyry copper deposit,northwest Yunnan,China[D]. Graduate School of Chinese Academy of Sciences (in Chinese with English abstract).

    [34]

    冷成彪,张兴春,王守旭,等,2007. 云南中甸地区两个斑岩铜矿容矿斑岩的地球化学特征——以雪鸡坪和普朗斑岩铜矿床为例[J]. 矿物学报,27(3-4):414 − 422.

    Leng C B,Zhang X C,Wang S X,et al.,2007. Geochemical characteristics of porphyry copper deposits in the Zhongdian area,Yunnan as exemplified by the Xuejiping and Pulang porphyry copper deposits[J]. Acta Mineralogica Sinica,27(3-4):414 − 422 (in Chinese with English abstract).

    [35]

    冷成彪,张兴春,王守旭,等,2008a. 滇西北雪鸡坪斑岩铜矿S、Pb同位素组成及对成矿物质来源的示踪[J]. 矿物岩石,28(4):80 − 88.

    Leng C B,Zhang X C,Wang S X,et al.,2008a. Sulfur and lead isotope compositions of the Xuejiping porphyry copper deposit in northwest Yunnan, China: tracing for the source of metals[J]. Mineralogy and Petrology,28(4):80 − 88 (in Chinese with English abstract).

    [36]

    冷成彪,张兴春,王守旭,等,2008b. 滇西北中甸松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J]. 大地构造与成矿学,32(1):124 − 130.

    Leng C B,Zhang X C,Wang S X,et al.,2008b. SHRIMP zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,northwest Yunnan,Chian and its geological implication[J]. Geotectonica et Metallogenia,32(1):124 − 130 (in Chinese with English abstract).

    [37]

    冷成彪,张兴春,王新松,等,2015. 云南中甸地区印支期和燕山晚期斑岩成矿作用研究[J]. 矿物学报,35(S1):401.

    Leng C B,Zhang X C,Wang X S,et al.,2015. Metallogenesis of porphyry of Indochinese and Late Yanshanian in the Zhongdian area,Yunnan,China[J]. Acta Mineralogica Sinica,35(S1):401 (in Chinese with English abstract).

    [38]

    李文昌,2007. 义敦岛弧构造演化与普朗超大型斑岩铜矿成矿模型[D]. 中国地质大学(北京).

    Li W C,2007. The tectonic evolution of Yidun island arc and metallogenic model of Pulang porphyry copper deposit,Yunnan,SW Chain[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [39]

    李文昌,曾普胜. 云南普朗超大型斑岩铜矿特征及成矿模型[J]. 成都理工大学学报(自然科学版),2007(4):436 − 446.

    Li W C,Zeng P S. Characteristics and metallogenic model of the Pulang superlarge porphyry copper deposit in Yunnan,China[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2007(4):436 − 446 (in Chinese with English abstract).

    [40]

    Li W K,Yang Z M,Cao K,et al.,2019. Redox-controlled generation of the giant porphyry Cu-Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 174(2):12.

    [41]

    Li X F,Dong G C,He W Y,et al.,2014. Geochronology and geochemistry of the porphyries in Xuejiping deposit in northwestern Yunnan:Petrogenesis and implication for mineralization[J]. Acta Geologica Sinica (English Edition),88:563 − 564. doi: 10.1111/1755-6724.12374_31

    [42]

    李雪峰,2016. 滇西北中甸弧印支期斑岩地球化学特征及含矿性研究[D]. 中国地质大学(北京).

    Li X F,2016. Geochemistry and ore-bearing potential research of the Indo-porphyries in Zhongdian arc,SN Yunnan[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [43]

    Li X H,Liu Y,Li Q L,et al,2009. Precise determination of phanerozoic zircon U-Pb age by multicollector SIMS without ex-ternal standardization[J]. Geochemistry Geophysics Geosystems,doi:10.1029 /2009GC002400.

    [44]

    李玉荣,范玉华,孟青,2009. 滇西北浪都矽卡岩型铜矿[J]. 云南地质,28(2):137 − 142.

    Li Y R,Fan Y H,Meng Q,2009. The Langdu skarn Cu deposit in northwest Yunan[J]. Yunnan Geology,28(2):137 − 142 (in Chinese with English abstract).

    [45]

    林清茶,夏斌,张玉泉,2006. 云南中甸地区雪鸡坪同碰撞石英闪长玢岩锆石SHRIMP U-Pb定年及其意义[J]. 地质通报,25(Z1):133 − 137.

    Lin Q C,Xia B,Zhang Y Q,2006. Zircon SHRIMP U-Pb dating of the syn-collisional Xuejiping quartz diorite porphyrite in Zhongdian,Yunnan,China,and its geological implications[J]. Geological Bulletin of China,25(Z1):133 − 137 (in Chinese with English abstract).

    [46]

    Liu H,Li Y G,Li W C,et al.,2022. Petrogenesis of an early cretaceous Xiabie Co I‐type granite in southern Qiangtang,Tibet:Evidence from geochemistry,geochronology,Rb‐Sr,Sm‐Nd,Lu‐Hf and Pb isotopes[J]. Acta Geologica Sinica (English Edition),96(3):919 − 937. doi: 10.1111/1755-6724.14777

    [47]

    刘军,武广,李铁刚,等,2014. 内蒙古镶黄旗哈达庙地区晚古生代中酸性侵入岩的年代学、地球化学、Sr-Nd同位素组成及其地质意义[J]. 岩石学报,30(1):95 − 108.

    Liu J,Wu G,Li T G,et al.,2014. SHRIMP zircon U-Pb dating,geochemistry,Sr-Nd isotopic analysis of the Late Paleozoic intermediate-acidic intrusive rocks in the Hadamiao area,Xianghuang Banner,Inner Mongolia and its geological significances[J]. Acta Petrologica Sinica,30(1):95 − 108 (in Chinese with English abstract).

    [48]

    刘旭东,2018. 滇西北普朗斑岩型铜多金属矿床成矿流体演化[D]. 中国地质大学(北京).

    Liu X D,2018. The evolution of ore-forming fluid of the Pulang porphyry copper polymetallic deposit in the northwest Yunnan Province,China[D]. China University of Geosciences(Beijing) (in Chinese with English abstract).

    [49]

    Liu X L,Zhang N,Kang J,2015. The lead isotope characteristics and tracing significance of ore metallogenic material in the Geza arc,Yunnan[J]. Advanced Materials Research,1073-1076:2054 − 2057.

    [50]

    刘学龙,李文昌,张娜,等,2014. 云南格咱岛弧地苏嘎成矿岩体I型花岗岩年代学、地球化学特征及地质意义[J]. 地质论评,60(1):103 − 114.

    Liu X L,Li W C,Zhang N,et al.,2014. Geochronological,geochemical characteristics of Disuga ore-forming I-type granitic porphyries in the Geza arc,Yunnan Province,and their geological significance[J]. Geological Review,60(1):103 − 114 (in Chinese with English abstract).

    [51]

    Ludwig K R,2003. ISOPLOT,Version 3.00. A geochronological toolkit for Microsoft Excel[M]. Berkeley Geochronology Center Special Publication,1 − 70.

    [52]

    Luo B J,Zhang H F,Zhang L Q,et al.,2020. The magma plumbing system of Mesozoic Shanyang porphyry groups,South Qinling and implications for porphyry copper mineralization[J]. Earth and Planetary Science Letters,543:116346. doi: 10.1016/j.jpgl.2020.116346

    [53]

    罗伟,彭静,金廷福,等,2023. 川西李家沟锂多金属矿区晚三叠世花岗细晶岩脉的成因:地球化学、锆石U-Pb年龄和Hf同位素的证据[J]. 沉积与特提斯地质,43(1):36 − 47.

    Luo W,Peng J,Jin T F,et al.,2023. Petrogenesis of granite aplite in the Lijiagou lithium polymetallic ore district in western Sichuan:constraints from geochemistry,zircon U-Pb geochronology and Hf isotope[J]. Sedimentary Geology and Tethyan Geology,43(1):36 − 47 (in Chinese with English abstract).

    [54]

    马星华,王志强,王超,等,2014. 壳幔岩浆混合作用与陆内环境高Sr/Y斑岩的形成及成矿:实例与探讨[J]. 岩石学报,30(7):2020 − 2030.

    Ma X H,Wang Z Q,Wang C,et al.,2014. Crust-mantle magma mixing and implications for the formation of high Sr/Y ore-bearing porphyries in non-arc environments:A case study and discussion[J]. Acta Petrologica Sinica,30(7):2020 − 2030 (in Chinese with English abstract).

    [55]

    Maniar P D,Piccoli P M,1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,101(5):635 − 643. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2

    [56]

    Middlemost EAK,1972. A simple classification of volcanic rocks[J]. Bulletin of Volcanology, 36:382 − 397.

    [57]

    Middlemost E A K,1985. Magmas and magmatic rocks[M]. London:Longman,1 − 266.

    [58]

    Middlemost E A K,1994. Naming materials in the magma/igneous rock system[J]. Earth Science Review,37:215 − 224. doi: 10.1016/0012-8252(94)90029-9

    [59]

    Mungall J E,2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits[J]. Geology,30:915 − 918.

    [60]

    潘桂棠,王立全,尹福光,等,2022. 青藏高原形成演化研究回顾、进展与展望[J]. 沉积与特提斯地质,2022,42(2):151 − 175.

    Pan G T,Wang L Q,Yin F G,et al.,2022. Researches on geological-tectonic evolution of Tibetan Plateau:A review,recent advances,and directions in the future[J]. Sedimentary Geology and Tethyan Geology,42(2):151 − 175 (in Chinese with English abstract).

    [61]

    Pan L C,Hu R Z,Wang X S,et al.,2016. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators:examples from four granite plutons in the Sanjiang region,SW China[J]. Lithos,254:118 − 130.

    [62]

    Pearce J A,Harris N B W,Tindle A G,1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,25(4):956 − 983. doi: 10.1093/petrology/25.4.956

    [63]

    Peccerillo R,Taylor S R,1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contrib. Mineral Petrol,58:63 − 81. doi: 10.1007/BF00384745

    [64]

    Reich M,Parada M A,Palacios C,et al.,2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of central Chile:metallogenic implications[J]. Mineralium Deposita,38:876 − 885. doi: 10.1007/s00126-003-0369-9

    [65]

    任江波,许继峰,陈建林,等,2011. “三江”地区中甸弧普朗成矿斑岩地球化学特征及其成因[J]. 岩石矿物学杂志,30(4):581 − 592. doi: 10.3969/j.issn.1000-6524.2011.04.003

    Ren J B,Xu J F,Chen J L,et al.,2011. Geochemistry and petrogenesis of Pulang porphyries in Sanjiang region[J]. Acta Petrologica et Mineralogica,30(4):581 − 592 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2011.04.003

    [66]

    任涛,钟宏,陈金法,等,2011. 云南中甸地区浪都高钾中酸性侵入岩的地球化学特征[J]. 矿物学报,31(1):43 − 54.

    Ren T,Zhong H,Chen J F,et al.,2011. Geochemical characteristics of the Langdu high-K intermediate-acid intrusive rocks in the Zhongdian area,northwest Yunnan province,P. R. China[J]. Acta Mineralogica Sinica,31(1):43 − 54 (in Chinese with English abstract).

    [67]

    Richards J P,2003. Tectono-magmatic precursors for porphyry Cu(Mo-Au) deposit formation[J]. Economic Geology,98(8):1515 − 1533. doi: 10.2113/gsecongeo.98.8.1515

    [68]

    Richards J P,2009. Postsubduction porphyry Cu-Au and epithermal Au deposits:Products of remelting of subduction-modified lithosphere[J]. Geology,37:247 − 250.

    [69]

    Richards J P,2011. High Sr/Y arc magmas and porphyry Cu±Mo±Au deposits:Just add water[J]. Economic Geology,106(7):1075 − 1081. doi: 10.2113/econgeo.106.7.1075

    [70]

    Richards J P,Spell T,Rameh E,et al.,2012. High Sr/Y magmas reflect arc maturity,high magmatic water content,and porphyry Cu±Mo±Au potential:examples from the Tethyan arcs of central and eastern Iran and western Pakistan[J]. Econ Geol,107:295 − 332. doi: 10.2113/econgeo.107.2.295

    [71]

    Schütte P,Chiaradia M,Barra F,et al.,2012. Metallogenic features of Miocene porphyry Cu and porphyry related mineral deposits in Ecuador revealed by Re-Os,40Ar/39Ar,and U-Pb geochronology,Miner[J]. Deposita,47,383 − 410.

    [72]

    沙建泽,罗朝德,王朋. 滇西北雪鸡坪铜矿区岩浆岩大地构造环境及成矿意义[J]. 矿产与地质,2016,30(5):703 − 711.

    Sha J Z,Luo C D,Wang P. Tectonic environment and metallogenic significance of magmatite in Xuejiping copper mine,northwest Yunnan[J]. Mineral Resources and Geology,2016,30(5):703 − 711 (in Chinese with English abstract).

    [73]

    Sillitoe R H,2010. Porphyry copper systems[J]. Economic Geology,105(1):3 − 41. doi: 10.2113/gsecongeo.105.1.3

    [74]

    Stern R J,2002. Subduction zones[J]. Reviews of Geophysics,40:1012.

    [75]

    Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society,London,Special Publications,42:313 − 345. doi: 10.1144/GSL.SP.1989.042.01.19

    [76]

    Tian Z D,Leng C B,Zhang X C,et al.,2019. Recognition of Late Triassic Cu-Mo mineralization in the northern Yidun arc (S. E. Tibetan Plateau):Implications for regional exploration[J]. Minerals,9:765.

    [77]

    万多,王可勇,李文昌,等,2012. 滇西北热林Cu-Mo矿床流体包裹体特征[J]. 吉林大学学报(地球科学版),42(S3):54 − 63.

    Wan D,Wang K Y,Li W C,et al.,2012. Characteristics of fluid inclusions of Relin Cu-Mo deposit in northwestern Yunnan province[J]. Journal of Jilin University (Earth Science Edition),42(S3):54 − 63 (in Chinese with English abstract).

    [78]

    Wang B Q,Zhou M F,Li J W,et al.,2011. Late Triassic porphyritic intrusions and associated volcanic rocks from the Shangri-La region,Yidun Terrane,eastern Tibetan Plateau:adakitic magmatism and porphyry copper mineralization[J]. Lithos,127(1):24 − 38.

    [79]

    Wang J T,Xiong X L,Takaha E,et al.,2019. Oxidation state of arc mantle revealed by partitioning of V,Sc and Ti between mantle minerals and basaltic melts[J]. Journal of Geophysical Research:Solid Earth,124(5):4617 − 4638. doi: 10.1029/2018JB016731

    [80]

    Wang Q,Zhao Z H,Bao Z W,et al.,2004. Geochemistry and petrogenesis of the Tongshankou and Yinzu adakitic intrusive rocks and the associated porphyry copper-molybdenum mineralization in southeast Hubei,East China[J]. Resource Geology,54:137 − 152. doi: 10.1111/j.1751-3928.2004.tb00195.x

    [81]

    王守旭,2008b. 云南中甸普朗斑岩铜矿矿床地球化学[D]. 中国科学院地球化学研究所.

    Wang S X,2008b. Geochemistry of Pulang porphyry copper deposit in the Zhongdian area,Yunnan Province[D]. Institute of Geochemistry,Chinese Academy of Sciences (in Chinese with English abstract).

    [82]

    王守旭,张兴春,冷成彪,等,2008a. 中甸红山矽卡岩铜矿稳定同位素特征及其对成矿过程的指示[J]. 岩石学报,24(3):480 − 488.

    Wang S X,Zhang X C,Leng C B,et al.,2008a. Stable isotopic compositions of the Hongshan skarn copper deposit in the Zhongdian area and its implication for the copper mineralization process[J]. Acta Petrologica Sinica,24(3):480 − 488 (in Chinese with English abstract).

    [83]

    Wang Y J,Fan W M,Guo F,2003. Geochemistry of early Mesozoic potassium-rich diorites-granodiorites in southeastern Hunan Province,South China:Petrogenesis and tectonic implications[J]. Geochemical Journal,37:427 − 448. doi: 10.2343/geochemj.37.427

    [84]

    Wiedenbeck M,Alle P,Corfu F,et al.,1995. Three natural zircon standards for U-Th-Pb,Lu-Hf,trace element and REE ana-lyses[J]. Geostandards Newsletter,19(1):1 − 23. doi: 10.1111/j.1751-908X.1995.tb00147.x

    [85]

    Wu T,Xiao L,Wilde S A,et al.,2017. A mixed source for the Late Triassic Garze-Daocheng granitic belt and its implications for the tectonic evolution of the Yidun arc belt,eastern Tibetan Plateau[J]. Lithos,288-289:214 − 230. doi: 10.1016/j.lithos.2017.07.002

    [86]

    Xiao B,Qin K Z,Li G M,et al.,2012. Highly oxidized magma and fluid evolution of Miocene Qulong giant porphyry Cu-Mo deposit,southern Tibet,China[J]. Resource Geology,62(1):4 − 18. doi: 10.1111/j.1751-3928.2011.00177.x

    [87]

    Xie B,Song H,Song S W,et al.,2022. Geochemical,zircon U-Pb-Hf-O isotopic evidence and molybdenite Re-Os dating from the Cuojiaoma batholith,eastern Tibetan Plateau:Implications for molybdenum potential and tectonic evolution[J]. Ore Geology Reviews,144.

    [88]

    Xiong X L,Xia B,Xu J F,et al.,2006. Na depletion in modern adakites via melt/rock reaction within the sub-arc mantle[J]. Chemical Geology,229:273 − 292. doi: 10.1016/j.chemgeo.2005.11.008

    [89]

    Yang L Q,He W Y,Gao X,et al.,2018. Mesozoic multiple magmatism and porphyry-skarn Cu-polymetallic systems of the Yidun Terrane,Eastern Tethys:Implications for subduction-and transtension-related metallogeny[J]. Gondwana Research,62:144 − 162. doi: 10.1016/j.gr.2018.02.009

    [90]

    Yang Z,Fu Y,Fang S J,et al.,2020. Mineralization of the Xuejiping porphyry Cu deposit,Western Yunnan,China:Constraints from magmatic oxidization and source[J]. Geological Journal,9:6412 − 6426.

    [91]

    尹观,倪师军,等,2009. 同位素地球化学[M]. 北京:地质出版社.

    Yin G,Ni S J,et al.,2009. Isotope geochemistry[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    [92]

    Zartman R E,Doe B R,1981. Plumbotectonics-the model[J]. Tectonophysics,75(1):135 − 162.

    [93]

    曾普胜,李文昌,王海平,等,2006. 云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征[J]. 岩石学报,22(4):989 − 1000.

    Zeng P S,Li W C,Wang H P,et al.,2006. The Indosinian Pulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology[J]. Acta Petrologica Sinica,22(4):989 − 1000 (in Chinese with English abstract).

    [94]

    Zhang C C,Sun W D,Wang J T,et al.,2017. Oxygen fugacity and porphyry mineralization:a zircon perspective of Dexing porphyry Cu deposit,China[J]. Geochim Cosmochim Acta,206:343 − 363. doi: 10.1016/j.gca.2017.03.013

    [95]

    张昌振,2020. 滇西北普朗斑岩型铜矿外围矿体流体特征及成矿物质来源研究[D]. 昆明理工大学.

    Zhang C Z,2020. Study on the fluid characteristics and ore forming material sources of the peripheral ore bodies of Pulang porphyry copper deposit in northwest Yunnan[D]. Kunming University of Science and Technology (in Chinese with English abstract).

    [96]

    张德会,赵仑山,张本仁,等,2013. 地球化学[M]. 北京:地质出版社.

    Zhang D H,Zhao L S,Zhang B R,et al.,2013. Geochemistry[M]. Beijing:Geological Publishing House (in Chinese with English abstract).

    [97]

    张兴春,冷成彪,杨朝志,等,2009. 滇西北中甸春都斑岩铜矿含矿斑岩的锆石SIMS U-Pb年龄及地质意义[J]. 矿物学报,29(S1):359 − 360.

    Zhang X C,Leng C B,Yang C Z,et al.,2009. SIMS zircon U-Pb dating of the Chundu ore-hosted porphyry,Zhongdian,northwest Yunnan,Chian and its geological implication[J]. Acta Mineralogica Sinica,29(S1):359 − 360 (in Chinese with English abstract).

    [98]

    张向飞,李文昌,杨镇,等,2022. 青藏高原东缘休瓦促钨钼矿区复式岩体时空分布及演化意义[J]. 沉积与特提斯地质,42(1):105 − 121.

    Zhang X F,Li W C,Yang Z,et al.,2022. Temporal-spatial distribution and evolution implication of the composite intrusion in the Xiuwacu W-Mo deposit,SE Tibetan Plateau[J]. Sedimentary Geology and Tethyan Geology,42(1):105 − 121 (in Chinese with English abstract).

    [99]

    周放,王保弟,刘函,等,2018. 中甸弧阿热岩体锆石U-Pb年龄、地球化学特征及岩石成因[J]. 地球科学,43(8):2614 − 2627.

    Zhou F,Wang B D,Liu H,et al.,2018. Zircon U-Pb dating,geochemistry and petrogenesis of intrusive rocks from A're area,Zhongdian arc[J]. Earth Sciences,43(8):2614 − 2627 (in Chinese with English abstract).

    [100]

    周晓丹,杨帆,吴静,等,2018. 云南普朗斑岩型铜矿床外围斑岩体成因探讨[J]. 地质科技情报,2018,37(4):39 − 50.

    Zhou X D,Yang F,Wu J,et al.,2018. Petrogenesis of porohyry body in the periphery of Pulang porphyry copper deposit,Yunnan[J]. Geological Science and Technology Information,2018,37(4):39 − 50 (in Chinese with English abstract).

    [101]

    Zhu D C,Wang Q,Zhao Z D,et al.,2015. Magmatic record of India-Asia collision[J]. Scientific Reports,5:14289. doi: 10.1038/srep14289

    [102]

    Zi J W,Peter A C,Fan W M,et al.,2012. Generation of early indosinian enriched mantle-derived granitoid pluton in the Sanjiang Orogen (SW China) in response to closure of the Paleo-Tethys[J]. Lithos,140-141:166 − 182. doi: 10.1016/j.lithos.2012.02.006

  • 加载中

(8)

计量
  • 文章访问数:  395
  • PDF下载数:  223
  • 施引文献:  0
出版历程
收稿日期:  2023-04-03
修回日期:  2023-06-30
录用日期:  2023-08-01
刊出日期:  2024-06-30

目录