The breakup geodynamic process and effects of the Paleo-Mesoproterozoic Columbia supercontinent
-
摘要:
超大陆的聚合与裂解是板块构造运动的自我表达形式,其聚合过程伴随有全球性俯冲、碰撞造山活动,而裂解过程则发育大规模基性岩浆事件。哥伦比亚超大陆是地球地质历史时期第一个真正意义上的全球性超大陆,其主体于2.1~1.8 Ga完成聚合,并于1.3 Ga最终裂解。相较于其他年轻的超大陆,哥伦比亚超大陆的古地理重建模型还存在较大的不确定性,这限制了对其裂解动力学过程及效应的认识。本文以全球古—中元古代基性岩浆事件对比为主线,综合已有研究成果及全球岩浆岩地球化学数据,提出古—中元古代多期地幔柱活动主导了哥伦比亚超大陆的不彻底裂解,影响了当时大陆地壳的化学成分和地形高度。高度分异的大陆地壳与低地形导致由陆壳物质风化剥蚀进入海洋的营养物质的通量大大降低,进而限制了海洋生物的初级生产力,最终阻碍了哥伦比亚超大陆至罗迪尼亚超大陆过渡时期的生命演化进程。
Abstract:The assembly and breakup of supercontinents is the self-expression of plate tectonics. The assembly stage is accompanied by global-scale subduction and collisional orogeny, while the fragmentation stage produces large-scale mafic magmatic events. The Columbia supercontinent was the first true supercontinent in Earth's history, and its main body coalesced between 2.1~1.8 Ga and finally broke apart at 1.3 Ga. Compared with the other younger supercontinents, the paleogeographic reconstruction model of the Columbia supercontinent still remains quite uncertain, which profoundly influences our understanding of the geodynamic processes and effects of its breakup. In this study, based on the correlation of global Paleo-Mesoproterozoic mafic magmatism events, integrated with the published work and analysis of global igneous rock geochemical data, we proposed that multiple Paleo-Mesoproterozoic mantle plume events resulted in the incomplete breakup of the Columbia supercontinent, which significantly affected the geochemical compositions and topographic height of the continental crust at that time. Highly differentiated continental crust and low topographic height together greatly reduced the flux of nutrients into the ocean by weathering and denudation of continental crust materials, thus limiting the primary productivity of marine organisms, and ultimately stalling the evolution of life during the transition period from the Colombian supercontinent to the Rodinia supercontinent.
-
Key words:
- Columbia supercontinent /
- Incomplete breakup /
- Mantle plumes /
- Paleo-Mesoproterozoic
-
-
图 1 哥伦比亚超大陆重建模式图(a,据Rogers and Santosh, 2009修改;b,据Zhao et al., 2002修改)
Figure 1.
图 2 哥伦比亚超大陆和罗迪尼亚超大陆古地理重建模式对比图(修改自Wang et al., 2021)
Figure 2.
图 4 全球中酸性岩浆岩成分从2.5 Ga到0.5 Ga的变化图(修改自Lu et al., 2023)
Figure 4.
图 5 分离结晶作用评估图(修改自Lu et al., 2023)
Figure 5.
图 6 大陆风化强度图(修改自Lu et al., 2023)
Figure 6.
-
[1] Bradley D C, 2008. Passive margins through earth history[J]. Earth-Science Reviews, 91: 1-26. doi: 10.1016/j.earscirev.2008.08.001
[2] Bataille C P, Willis A, Yang X, Liu X M, 2017. Continental igneous rock composition: A major control of past global chemical weathering[J]. Science Advances, 3: e1602183. doi: 10.1126/sciadv.1602183
[3] Brandl P A, Regelous M, Beier C, et al. , 2013. High mantle temperatures following rifting caused by continental insulation[J]. Nature Geoscience, 6: 391-394. doi: 10.1038/ngeo1758
[4] Cawood P A, Strachan R A, Pisarevsky S A, et al. , 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles[J]. Earth and Planetary Science Letters, 449: 118-126. doi: 10.1016/j.jpgl.2016.05.049
[5] Cawood P A, 2020. Earth Matters: A tempo to our planet’s evolution[J]. Geology, 48: 525-526.
[6] Crockford P W, Hayles J A, Bao H, et al. , 2018. Triple oxygen isotope evidence for limited mid-Proterozoic primary productivity[J]. Nature, 559: 613-616. doi: 10.1038/s41586-018-0349-y
[7] 崔晓庄, 任光明, 孙志明, 等, 2020. 扬子陆块西南缘早前寒武纪撮科杂岩记录的多期岩浆-变质事件[J]. 地球科学, 45(8): 1-16
Cui X Z, Ren G M, Sun Z M, et al. , 2020. Multiple Tectonothermal Events Recorded in the Early Precambrian Cuoke Complex in the Southwestern Yangtze Block, South China[J]. Earth Science, 45(8): 1-16.
[8] Cui X Z, Wang J, Sun Z, et al. , 2019. Early Paleoproterozoic (ca. 2.36 Ga) post-collisional granitoids in Yunnan, SW China: Implications for linkage between Yangtze and Laurentia in the Columbia supercontinent[J]. Journal of Asian Earth Sciences, 169: 308-322. doi: 10.1016/j.jseaes.2018.10.026
[9] Condie K C, Pisarevsky S A, Puetz S J, et al. , 2023. A-type granites in space and time: Relationship to the supercontinent cycle and mantle events[J]. Earth and Planetary Science Letters, 610: 118125. doi: 10.1016/j.jpgl.2023.118125
[10] de Oliveira A, Rocha de Rezende C, 2019. Fragments of 1.79-1.75 Ga Large Igneous Provinces in reconstructing Columbia (Nuna): A Statherian supercontinent-superplume coupling? [J] Episodes, 42: 55 − 67.
[11] Dan W, Li X H, Wang Q, et al. , 2014. Paleoproterozoic S-type granites in the Helanshan Complex, Khondalite Belt, North China Craton: Implications for rapid sediment recycling during slab break-off [J]. Precambrian Research, 254: 59-72. doi: 10.1016/j.precamres.2014.07.024
[12] Domeier M, Van der Voo R, Torsvik T H, 2012. Paleomagnetism and Pangea: the road to reconciliation[J]. Tectonophysics, 514: 14-43.
[13] Evans D A D, Mitchell R N, 2011. Assembly and breakup of the core of Paleoproterozoic-Mesoproterozoic supercontinent Nuna[J]. Geology, 39: 443-446.
[14] Ernst R E, Bleeker W, Söderlund U, et al. , 2013a. Large Igneous Provinces and supercontinents: Toward completing the plate tectonic revolution[J]. Lithos, 174: 1-14. doi: 10.1016/j.lithos.2013.02.017
[15] Ernst R E, Pereira E, Hamilton M A, et al. , 2013b. Mesoproterozoic intraplate magmatic ‘barcode’ record of the Angola portion of the Congo Craton: Newly dated magmatic events at 1505 and 1110 Ma and implications for Nuna (Columbia) supercontinent reconstructions[J]. Precambrian Research, 230: 103-118. doi: 10.1016/j.precamres.2013.01.010
[16] Ernst R E, Hamilton M A, Söderlund U, et al. , 2016. Long-lived connection between southern Siberia and northern Laurentia in the Proterozoic[J]. Nature Geoscience, 9: 464-469. doi: 10.1038/ngeo2700
[17] Fan H P, Zhu W G, Li Z X, 2020. Paleo- to Mesoproterozoic magmatic and tectonic evolution of the southwestern Yangtze Block, south China: New constraints from ca. 1.7–1.5 Ga mafic rocks in the Huili-Dongchuan area[J]. Gondwana Research, 87: 248-262. doi: 10.1016/j.gr.2020.06.019
[18] Furlanetto F, Thorkelson D J, Rainbird R H, et al. , 2016. The Paleoproterozoic Wernecke Supergroup of Yukon, Canada: Relationships to orogeny in northwestern Laurentia and basins in North America, East Australia, and China[J]. Gondwana Research, 39: 14-40. doi: 10.1016/j.gr.2016.06.007
[19] 耿元生, 旷红伟, 杜利林, 等, 2019. 从哥伦比亚超大陆裂解事件论古/中元古代的界限[J]. 岩石学报, 35(8): 2299-2324 doi: 10.18654/1000-0569/2019.08.02
Geng Y S, Kuang H W, Du L L, et al. , 2019. On the Paleo-Mesoproterozoic boundary from the breakup event of the Columbia supercontinent[J]. . Acta Petrologica Sinica, 35(8): 2299-2324. doi: 10.18654/1000-0569/2019.08.02
[20] Gladkochub D P, Donskaya T V, Pisarevsky S A, et al. , 2022. 1.79-1.75 Ga mafic magmatism of the Siberian craton and late Paleoproterozoic paleogeography[J]. Precambrian Research, 370: 106557. doi: 10.1016/j.precamres.2022.106557
[21] Gibson G M, Champion D C, Huston D L, et al. , 2020. Orogenesis in Paleo-Mesoproterozoic Eastern Australia: A response to Arc-Continent and Continent-Continent Collision During Assembly of the Nuna Supercontinent[J]. Tectonics, 39: e2019TC005717. doi: 10.1029/2019TC005717
[22] Johansson Å, 2009. Baltica, Amazonia and the SAMBA connection–1000 million years of neighbourhood during the Proterozoic? [J]. Precambrian Research, 175: 221-234. doi: 10.1016/j.precamres.2009.09.011
[23] Hao J H, Knoll A H, Huang F, et al. , 2020. Cycling phosphorus on the Archean Earth: Part I. Continental weathering and riverine transport of phosphorus[J]. Geochimica et Cosmochimica Acta, 273: 70-84. doi: 10.1016/j.gca.2020.01.027
[24] Hartmann J, Moosdorf N, Lauerwald R, et al. , 2014. Global chemical weathering and associated P-release — The role of lithology, temperature and soil properties[J]. Chemical Geology, 363: 145-163. doi: 10.1016/j.chemgeo.2013.10.025
[25] Horton F, 2015. Did phosphorus derived from the weathering of large igneous provinces fertilize the Neoproterozoic ocean? [J]. Geochemistry, Geophysics, Geosystems, 16: 1723-1738.
[26] 江新胜, 崔晓庄, 卓皆文, 等, 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31-37
Jiang X S, Cui X Z, Zhuo J W, et al. , 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 40(3): 31-37
[27] Keller B, Schoene B, 2018. Plate tectonics and continental basaltic geochemistry throughout Earth history[J]. Earth and Planetary Science Letters, 481: 290-304. doi: 10.1016/j.jpgl.2017.10.031
[28] Keppie D F, 2015. How the closure of paleo-Tethys and Tethys oceans controlled the early breakup of Pangaea[J]. Geology, 43: 335-338.
[29] Kirscher U, Mitchell R N, Liu Y B, et al. 2020. Paleomagnetic constraints on the duration of the Australia-Laurentia connection in the core of the Nuna supercontinent[J]. Geology, 49(2): 174 − 179.
[30] Kusky T, Li J, Santosh M, 2007. The Paleoproterozoic North Hebei orogen: North China craton's collisional suture with the Columbia supercontinent[J]. Gondwana Research, 12: 4-28. doi: 10.1016/j.gr.2006.11.012
[31] Lenardic A, Moresi L, Jellinek A, et al. , 2011. Continents, supercontinents, mantle thermal mixing, and mantle thermal isolation: Theory, numerical simulations, and laboratory experiments[J]. Geochemistry, Geophysics, Geosystems, 12: Q10016.
[32] 李献华, 2021. 超大陆裂解的主要驱动力—地幔柱或深俯冲? [J]. 地质学报 95(1), 20 − 31.
Li X H, 2021. The major driving force triggering breakup of supercontinent: mantle plumes or deep subduction? [J]. Acta Geologica Sinica, 95(1): 20 − 31(in Chinese with English abstract).
[33] Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis[J]. Precambrian Research, 160: 179-210. doi: 10.1016/j.precamres.2007.04.021
[34] Li Z X, Mitchell R N, Spencer C J, et al. 2019. Decoding Earth's rhythms: Modulation of supercontinent cycles by longer superocean episodes[J]. Precambrian Research, 323: 1 − 5.
[35] Lu G M, Wang W, Cawood P A, et al. , 2020. Late Paleo- to early Mesoproterozoic mafic magmatism in the SW Yangtze Block: Mantle plumes associated with Nuna breakup? [J]. Journal of Geophysical Research: Solid Earth, 125: e2019JB019260. doi: 10.1029/2019JB019260
[36] Lu G M, Wang W, Ernst R E, et al. , 2023. Evolutionary stasis during the Mesoproterozoic Columbia-Rodinia supercontinent transition[J]. Precambrian Research, 391: 107057. doi: 10.1016/j.precamres.2023.107057
[37] Meert J G, 2012. What's in a name? The Columbia (Paleopangaea/Nuna) supercontinent[J]. Gondwana Research, 21: 987-993. doi: 10.1016/j.gr.2011.12.002
[38] Murphy J B, Nance R D, 2003. Do supercontinents introvert or extrovert?: Sm-Nd isotope evidence[J]. Geology, 31: 873-876.
[39] Murphy J B, Nance R D, 2005. Do supercontinents turn inside-in or inside-out? [J]. International Geology Review, 47: 591-619. doi: 10.2747/0020-6814.47.6.591
[40] Mitchell R N, Kilian T M, Evans D A D, 2012. Supercontinent cycles and the calculation of absolute palaeolongitude in deep time[J]. Nature, 482: 208-211. doi: 10.1038/nature10800
[41] Nance R D, Murphy J B, Santosh M, 2014. The supercontinent cycle: A retrospective essay[J]. Gondwana Research, 25: 4-29. doi: 10.1016/j.gr.2012.12.026
[42] Niu Y L, 2020. On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes[J]. Journal of Asian Earth Sciences, 194: 104367. doi: 10.1016/j.jseaes.2020.104367
[43] Nordsvan A R, Collins W J, Li Z X, et al. 2018. Laurentian crust in northeast Australia: Implications for the assembly of the supercontinent Nuna[J]. Geology, 46(3): 251 − 254.
[44] Payne J L, Hand M, Barovich K M, et al. , 2009. Correlations and reconstruction models for the 2500-1500 Ma evolution of the Mawson Continent[J]. Geological Society of London Special Publications, 323: 319-355. doi: 10.1144/SP323.16
[45] Peng P, 2015. Precambrian mafic dyke swarms in the North China Craton and their geological implications[J]. Science China Earth Sciences, 58: 649-675. doi: 10.1007/s11430-014-5026-x
[46] Pourteau A, Smit M A, Li Z X, et al. 2018. 1.6 Ga crustal thickening along the final Nuna suture[J]. Geology, 46: 959 − 962.
[47] Reis N J, Teixeira W, Hamilton M A, et al. 2013. Avanavero mafic magmatism, a late Paleoproterozoic LIP in the Guiana Shield, Amazonian Craton: U-Pb ID-TIMS baddeleyite, geochemical and paleomagnetic evidence[J]. Lithos, 174: 175 − 195.
[48] Roberts N M W, 2013. The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent[J]. Geoscience Frontiers, 4: 681-691. doi: 10.1016/j.gsf.2013.05.004
[49] Rogers J J W, Santosh M, 2002. Configuration of Columbia, a Mesoproterozoic Supercontinent[J]. Gondwana Research, 5: 5-22. doi: 10.1016/S1342-937X(05)70883-2
[50] Salminen J M, Evans D A D, Trindade R I F, et al. , 2016. Paleogeography of the Congo/Sao Francisco craton at 1.5 Ga: Expanding the core of Nuna supercontinent[J]. Precambrian Research, 286: 195-212. doi: 10.1016/j.precamres.2016.09.011
[51] Silveira E M, Söderlund U, Oliveira E P, et al. , 2013. First precise U-Pb baddeleyite ages of 1500 Ma mafic dykes from the São Francisco Craton, Brazil, and tectonic implications[J]. Lithos, 174: 144-156. doi: 10.1016/j.lithos.2012.06.004
[52] Sizova E, Gerya T, Brown M, et al. , 2010. Lithos subduction styles in the Precambrian : Insight from numerical experiments[J]. Lithos, 116(3-4): 209-229. doi: 10.1016/j.lithos.2009.05.028
[53] Stacey J S, Kramers J D, 1975. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 26: 207-221. doi: 10.1016/0012-821X(75)90088-6
[54] Tang M, Chu X, Hao J, et al. , 2021. Orogenic quiescence in Earth’s middle age[J]. Science, 371: 728-731. doi: 10.1126/science.abf1876
[55] Volante S, Pourteau A, Collins W J, et al. , 2019. Multiple P-T-d-t paths reveal the evolution of the final Nuna assembly in northeast Australia[J]. Journal of Metamorphic Geology, 38(6): 593-627.
[56] Wang L J, Yu J H, Griffin W L, et al. , 2012. Early crustal evolution in the western Yangtze Block: Evidence from U-Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks[J]. Precambrian Research, 222-223: 368-385. doi: 10.1016/j.precamres.2011.08.001
[57] 王生伟, 蒋小芳, 杨波, 等, 2016. 康滇地区元古宙构造运动Ⅰ: 昆阳陆内裂谷、地幔柱及其成矿作用[J]. 地质论评, 62( 6): 1353-1377
Wang S W, Jiang X F, Yang B, et al. , 2016. The Proterozoic tectonic movement in Kangdian area I: Kunyang intracontinental rift, mantle plume and its metallogenesis [J]. Geological Review, 62: 1353-1377.
[58] 王伟, 卢桂梅, 黄思访, 等, 2019. 扬子陆块古-中元古代地质演化与Columbia超大陆重建[J]. 矿物岩石地球化学通报, 38(1): 30-52
Wang W, Lu G M, Huang S F, et al. , 2019. Geological Evolution of the Yangtze Block in Paleo-to Meso-Proterozoic and Its Implication on the Reconstruction of the Columbia Supercontinent[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 38(1): 30-52.
[59] Wang W, Zhou M F, Zhao X F, et al. , 2014. Late Paleoproterozoic to Mesoproterozoic rift successions in SW China: Implication for the Yangtze Block-North Australia-Northwest Laurentia connection in the Columbia supercontinent[J]. Sedimentary Geology, 309: 33-47. doi: 10.1016/j.sedgeo.2014.05.004
[60] Wang W, Cawood P A, Zhou M F, et al. , 2016. Paleoproterozoic magmatic and metamorphic events link Yangtze to northwest Laurentia in the Nuna supercontinent[J]. Earth & Planetary Science Letters, 433: 269-279.
[61] Wang W, Cawood P A, Pandit M K, 2021. India in the Nuna to Gondwana supercontinent cycles: Clues from the north Indian and Marwar Blocks[J]. American Journal of Science, 321: 83-117. doi: 10.2475/01.2021.02
[62] Wingate M T D, Pisarevsky S A, Gladkochub D P, et al. 2009. Geochronology and paleomagnetism of mafic igneous rocks in the Olenek Uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography[J]. Precambrian Research, 170: 256 − 266.
[63] Ye X T, Zhang C L, Santosh M, et al. , 2016. Growth and evolution of Precambrian continental crust in the southwestern Tarim terrane: New evidence from the ca. 1.4Ga A-type granites and Paleoproterozoic intrusive complex[J]. Precambrian Research, 275: 18-34. doi: 10.1016/j.precamres.2015.12.017
[64] Zhang S H, Li Z X, Evans D A D, et al. , 2012. Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China[J]. Earth and Planetary Science Letters, 353-354: 145-155. doi: 10.1016/j.jpgl.2012.07.034
[65] Zhang S H, Zhao Y, Li X H, et al. , 2017. The 1.33-1.30 Ga Yanliao large igneous province in the North China Craton: Implications for reconstruction of the Nuna (Columbia) supercontinent, and specifically with the North Australian Craton[J]. Earth and Planetary Science Letters, 465: 112-125. doi: 10.1016/j.jpgl.2017.02.034
[66] Zhao G C, Cawood P A, Wilde S A, et al. , 2002. Review of global 2.1-1.8 Ga orogens: implications for a pre-Rodinia supercontinent[J]. Earth Science Reviews, 59: 125-162. doi: 10.1016/S0012-8252(02)00073-9
[67] Zhao G C, Sun M, Wilde S A, et al. , 2004. A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup[J]. Earth Science Reviews, 67: 91-123. doi: 10.1016/j.earscirev.2004.02.003
[68] Zheng R, Li J, Xiao W J, et al. , 2022. A combination of plume and subduction tectonics contributing to breakup of northern Rodinia: Constraints from the Neoproterozoic magmatism in the Dunhuang-Alxa Block, northwest China[J]. GSA Bulletin, 135: 1109-1126.
[69] Zhou M F, Zhao X F, Chen W T, et al. , 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam[J]. Earth-Science Reviews, 139: 59-82 doi: 10.1016/j.earscirev.2014.08.013
[70] Zou Y, Mitchell R N, Chu X, et al. , 2023. Surface evolution during the mid-Proterozoic stalled by mantle warming under Columbia–Rodinia[J]. Earth and Planetary Science Letters, 607: 118055. doi: 10.1016/j.jpgl.2023.118055
-