扬子陆块西北缘早新元古代俯冲增生过程的岩浆记录

吴鹏, 张少兵, 郑永飞, 张小菊, 徐争启, 施泽明. 2024. 扬子陆块西北缘早新元古代俯冲增生过程的岩浆记录. 沉积与特提斯地质, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005
引用本文: 吴鹏, 张少兵, 郑永飞, 张小菊, 徐争启, 施泽明. 2024. 扬子陆块西北缘早新元古代俯冲增生过程的岩浆记录. 沉积与特提斯地质, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005
WU Peng, ZHANG Shaobing, ZHENG Yongfei, ZHANG Xiaoju, XU Zhengqi, SHI Zeming. 2024. Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005
Citation: WU Peng, ZHANG Shaobing, ZHENG Yongfei, ZHANG Xiaoju, XU Zhengqi, SHI Zeming. 2024. Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China. Sedimentary Geology and Tethyan Geology, 44(1): 216-230. doi: 10.19826/j.cnki.1009-3850.2024.01005

扬子陆块西北缘早新元古代俯冲增生过程的岩浆记录

  • 基金项目: 国家自然科学基金项目(41973002,41772187);成都理工大学珠峰科学研究计划项目(2023ZF11413)
详细信息
    作者简介: 吴鹏(1991—),男,研究员,博士,主要从事前寒武纪地质学、火成岩地球化学和氮同位素地球化学研究。E-mail:pengwu@cdut.edu.cn
  • 中图分类号: P534.1

Magmatic record of early Neoproterozoic subduction-accretion in the northwestern margin of the Yangtze Block, South China

  • 华南早新元古代俯冲相关岩浆作用记录为揭示罗迪尼亚超大陆边缘陆块的聚合及增生过程提供了重要制约。本文聚焦华南扬子陆块西北缘出露的早新元古代岩浆作用记录,总结梳理了其年代学框架、地球化学特征以及同位素特征,查明了其源区性质和岩石学成因、并探讨了不同阶段岩浆记录所对应的构造环境。结果表明,扬子陆块西北缘约1.0~0.9 Ga岩石具有与新生岛弧岩浆类似的微量元素特征,强不相容元素的含量略低于大陆弧,并且具有亏损的Sr-Nd-Hf同位素组成和略低于地幔值的锆石δ18O值,这些特征指示约1.0~0.9 Ga岩浆岩最有可能形成于洋内弧环境。相比之下,约0.9~0.83 Ga岩浆岩具有与平均上地壳类似的微量元素特征,富集强不相容元素和轻稀土元素,亏损高场强元素,并且具有富集的Sr-Nd-Hf同位素组成,锆石δ18O值与地幔值相当或略高,指示其可能形成于大陆弧环境。此外,镁铁质岩石全岩Nd和锆石Hf同位素随年龄的长期变化趋势揭示了地幔源区性质周期性地富集和亏损,这可能是由于俯冲带间歇性地前进和后撤引起的挤压–伸展构造体制的不断交替所致。本文结果为扬子陆块西北缘新元古代早期的构造演化历史和俯冲增生动力学机制提供了制约。

  • 加载中
  • 图 1  扬子陆块西北缘地质简图以及新元古代早期岩浆岩的分布图(年龄统计和参考文献见附表1)

    Figure 1. 

    图 2  扬子西北缘1.0~0.9 Ga火成岩的岩石学分类图解及蛛网图

    Figure 2. 

    图 3  扬子西北缘0.9~0.83 Ga火成岩的岩石学分类图解及蛛网图

    Figure 3. 

    图 4  扬子西北缘早新元古代岩浆岩的全岩εNd(t)、锆石εHf(t)和δ18O值与锆石U-Pb年龄图解

    Figure 4. 

    图 5  扬子西北缘早新元古代构造演化图

    Figure 5. 

  • [1]

    Ashwal L D, Demaiffe D, Torsvik T H, 2002. Petrogenesis of Neoproterozoic granitoids and related rocks from the Seychelles: The case for an Andean-type arc origin[J]. Journal of Petrology, 43: 45–83. doi: 10.1093/petrology/43.1.45

    [2]

    Berkana W, Wu H, Ling W, et al. , 2022. Neoproterozoic metavolcanic suites in the Micangshan terrane and their implications for the tectonic evolution of the NW Yangtze block, South China[J]. Precambrian Research, 368: 106476. doi: 10.1016/j.precamres.2021.106476

    [3]

    蔡文春, 曾忠诚, 赵鹏彬, 等, 2021. 南秦岭东部新元古代埃达克质岩的发现及其地质意义[J]. 地质学报, 95(3): 686-702

    Cai W C, Zeng Z C, Zhao P, et al. , 2021. The discovery of Neoproterozoic adakitic rocks in the east of South Qinling and its geological significance[J]. Acta Geologica Sinica, 95: 686–702

    [4]

    Cawood P A, Wang Y J, Xu Y J, et al. , 2013. Locating south China in Rodinia and Gondwana: A fragment of greater India lithosphere?[J]. Geology, 41: 903–906.

    [5]

    Cawood P A, Pisarevsky S A, 2017. Laurentia-Baltica-Amazonia relations during Rodinia assembly[J]. Precambrian Research, 292: 386–397 doi: 10.1016/j.precamres.2017.01.031

    [6]

    Cawood P A, Kröner A, Collins W, et al. , 2009. Accretionary orogens through Earth history[J]. Geological Society, London, Special Publications, 318: 1–36. doi: 10.1144/SP318.1

    [7]

    Chang L, Zhang S, Li H, et al. , 2022. New paleomagnetic insights into the Neoproterozoic connection between South China and India and their position in Rodinia[J]. Geophysical Research Letters, 49: e2022GL098348. doi: 10.1029/2022GL098348

    [8]

    Chen Q, Sun M, Zhao G, et al. , 2019. Episodic crustal growth and reworking of the Yudongzi terrane, South China: Constraints from the Archean TTGs and potassic granites and Paleoproterozoic amphibolites[J]. Lithos, 326-327: 1–18. doi: 10.1016/j.lithos.2018.12.005

    [9]

    Chen W T, Sun W H, Wang W, et al. , 2014. “Grenvillian” intra-plate mafic magmatism in the southwestern Yangtze Block, SW China[J]. Precambrian Res, 242: 138–153. doi: 10.1016/j.precamres.2013.12.019

    [10]

    Chen W T, Sun W H, Zhou M F, et al. , 2018. Ca. 1050 Ma intracontinental rift-related A-type felsic rocks in the southwestern Yangtze Block, South China[J]. Precambrian Res, 309: 22–44. doi: 10.1016/j.precamres.2017.02.011

    [11]

    Collins W J, Richards S W, 2008. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology, 36: 559–562.

    [12]

    Condie K C, 2008. Did the character of subduction change at the end of the Archean? Constraints from convergent-margin granitoids[J]. Geology, 36: 611–614.

    [13]

    崔建堂, 王峰, 段建国, 等, 2013. 南秦岭西乡群孙家河组锆石SHRIMP U-Pb年龄及其构造地质意义[J]. 沉积与特提斯地质, 33: 1-5

    Cui J, Wang F, Duan J, et al. , 2013. The Sunjiahe Formation of the Xixiang Group, southern Qinling Ranges: SHRIMP zircon U-Pb age and its tectonic implications[J]. Sedimentary Geology and Tethyan Geology, 33: 1–5

    [14]

    Deng H, Peng S B, Polat A, et al. , 2017. Neoproterozoic IAT Intrusion into Mesoproterozoic MOR Miaowan Ophiolite, Yangtze Craton: Evidence for Evolving Tectonic Settings[J]. Precambrian Research, 289: 75–94. doi: 10.1016/j.precamres.2016.12.003

    [15]

    邓奇, 王剑, 汪正江, 等, 2013. 扬子北缘元古宇马槽园群时代归属新证据: 对地层对比和古地理格局的启示[J]. 地质通报, 32(4): 631-638

    Deng Q, Wang J, Wang Z, et al. , 2013, New evidence for the age of the Macaoyuan Group on the northern margin of the Yangtze block, South China—implications for stratigraphic correlation and palaeogeographic framework[J]. Geological Bulletin of China, 32(4): 631–638

    [16]

    邓奇, 汪正江, 任光明, 等, 2020. 扬子地块西北缘~2.09 Ga和~1.76 Ga花岗质岩石: Columbia超大陆聚合-裂解的岩浆记录[J]. 地球科学, 45(9): 3295-3312

    Deng Q, Wang Z, Ren G, 2020. Identification of the ~2.09 Ga and ~1.76 Ga granitoids in the northwestern Yangtze Block: Records of the assembly and break-up of Columbia supercontinent[J]. Earth Science, 45: 3295–3312

    [17]

    邓奇, 崔晓庄, 汪正江, 等, 2023. 扬子陆块北缘构造演化新认识: 来自原花山群年代学和地球化学的制约[J]. 沉积与特提斯地质, 43(1): 212−225.

    Deng Q, Cui X, Wang Z, et al. , 2023. New understanding of the tectonic evolution of the northern margin of Yangtze Block: Constraints from the geochronology and geochemistry of the Huashan Group[J]. Sedimentary Geology and Tethyan Geology, 43(1): 212–225 .

    [18]

    Dong Y P, Liu X M, Santosh M, et al. , 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: constraints from zircon U-Pb geochronology and geochemistry[J]. Precambrian Research, 196-197: 247–274. doi: 10.1016/j.precamres.2011.12.007

    [19]

    Dong Y P, Liu X M, Santosh M, et al. , 2011. Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: constrains from zircon U-Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif[J]. Precambrian Research, 189: 66–90. doi: 10.1016/j.precamres.2011.05.002

    [20]

    Dong Y P, Santosh M, 2016. Tectonic architecture and multiple orogeny of the Qinling Orogenic Belt, Central China[J]. Gondwana Research, 29: 1–40. doi: 10.1016/j.gr.2015.06.009

    [21]

    Dong Y P, Sun S S, Yang Z, et al. , 2017. Neoproterozoic subduction-accretionary tectonics of the South Qinling Belt, China[J]. Precambrian Research, 293: 73–90. doi: 10.1016/j.precamres.2017.02.015

    [22]

    Druschke P, Hanson A D, Yan Q, et al. , 2006. Stratigraphic and U-Pb SHRIMP detrital zircon evidence for a Neoproterozoic continental arc, Central China: Rodinia implications[J]. Journal of Geology, 114: 627–636. doi: 10.1086/506162

    [23]

    Feng Q L, Du Y S, Yin H F, et al., 1996. Carboniferous radiolaria fauna firstly discovered in Mian-Lüe ophiolitic mélange belt of south Qinling Mountains[J]. Science in China (Series D) 39 (Suppl. I): 87 – 92.

    [24]

    Gan B P, Lai S C, Qin J F, et al. , 2017. Neoproterozoic alkaline intrusive complex in the northwestern Yangtze Block, Micang Mountains region, South China: petrogenesis and tectonic significance[J]. International Geology Review, 59: 311–332. doi: 10.1080/00206814.2016.1258676

    [25]

    Gao F, Pei X Z, Li R B, et al. , 2020. Neoproterozoic tectonic evolution of the northwestern margin of the Yangtze Block (southwestern China): Evidence from sandstone geochemistry and detrital zircon U-Pb ages of the Hengdan Group[J]. Precambrian Research, 344: 105737. doi: 10.1016/j.precamres.2020.105737

    [26]

    耿英英, 2010. 扬子地块北缘花岗岩SHRIMP锆石U-Pb定年及地球化学特征研究[D]. 北京: 中国地质大学(北京).

    Geng Y Y, 2010. SHRIMP U-Pb zircon geochronology and geochemistry study of Neoproterozoic granites in the northern margin of Yangtze continent[D]. Beijing: China University of Geosciences(Beijing)(in Chinese with English abstract).

    [27]

    宫相宽, 陈丹玲, 赵姣, 2013. 陕西铜厂闪长岩地球化学、锆石U-Pb定年及Lu-Hf同位素研究[J]. 西北地质, 46(3): 50-63

    Gong X, Chen D, Zhao J. , 2013. Studies on Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope Composition of the Tongchang Diorites, Shaanxi Province[J]. Northwestern Geology, 46(3): 50-63

    [28]

    He Y, Wu Y B, Zhao Y, et al. , 2023. Neoproterozoic amphibolite-facies metamorphism of the Douling complex in the northern Yangtze Craton and its tectonic implications: Constraints from petrology and zircon U-Pb-Hf-O isotopes[J]. Precambrian Research, 390: 107039. doi: 10.1016/j.precamres.2023.107039

    [29]

    Hoffman P F, 1991. Did the Breakout of Laurentia Turn Gondwanaland Inside-Out?[J]. Science, 252: 1409–1412. doi: 10.1126/science.252.5011.1409

    [30]

    Hu J, Liu X C, Qu W, et al. , 2019. Mid-Neoproterozoic amphibolite facies metamorphism at the northern margin of the Yangtze craton[J]. Precambrian Research, 326: 333–343. doi: 10.1016/j.precamres.2017.10.010

    [31]

    Hu P Y, Zhai Q G, Wang J, et al. , 2017. The Shimian ophiolite in the western Yangtze Block, SW China: Zircon SHRIMP U-Pb ages, geochemical and Hf-O isotopic characteristics, and tectonic implications[J]. Precambrian Research, 298: 107–122. doi: 10.1016/j.precamres.2017.06.005

    [32]

    Huang Y, Wang X L, Li J Y, et al. , 2021b. Early Neoproterozoic tectonic evolution of northern Yangtze Block: Insights from sedimentary sequences from the Dahongshan area[J]. Precambrian Research, 365: 106382. doi: 10.1016/j.precamres.2021.106382

    [33]

    Hui B, Dong Y P, Cheng C, et al. , 2017. Zircon U–Pb chronology, Hf isotope analysis and whole-rock geochemistry for the Neoarchean-Paleoproterozoic Yudongzi complex, northwestern margin of the Yangtze craton, China[J]. Precambrian Research, 301: 65–8. doi: 10.1016/j.precamres.2017.09.003

    [34]

    Hui B, Dong Y P, Liu G, et al. , 2020a. Origin of mafic intrusions in the Micangshan Massif, Central China: Implications for the Neoproterozoic tectonic evolution of the northwestern Yangtze Block[J]. Journal of Asian Earth Science, 190: 104132. doi: 10.1016/j.jseaes.2019.104132

    [35]

    Hui B, Dong Y P, Zhang F F, et al. , 2020b. Neoproterozoic active margin in the northwestern Yangtze Block, South China: New clues from detrital zircon U-Pb geochronology and geochemistry of sedimentary rocks from the Hengdan Group[J]. Geological Magazine, 158 (5): 842–858.

    [36]

    Hui B, Dong Y P, Zhang F F, et al. , 2021. Petrogenesis and tectonic implications of the Neoproterozoic mafic intrusions in the Bikou Terrane along the northwestern margin of the Yangtze Block, South China[J]. Ore Geology Reviews, 131: 104014. doi: 10.1016/j.oregeorev.2021.104014

    [37]

    江新胜, 崔晓庄, 卓皆文, 等, 2020. 华南扬子陆块西缘新元古代康滇裂谷盆地开启时间新证据[J]. 沉积与特提斯地质, 40(3): 31-37

    Jiang X S, Cui X Z, Zhuo J W, et al. , 2020. New evidence for the opening time of the Neoproterozoic Kangdian rift basin, western Yangtze Block, South China[J]. Sedimentary Geology and Tethyan Geology, 40(3): 31-37

    [38]

    Jing X, Yang Z, Tong Y, et al. , 2015. A revised paleomagnetic pole from the mid-Neoproterozoic Liantuo Formation in the Yangtze block and its paleogeographic implications[J]. Precambrian Research, 268: 194–211. doi: 10.1016/j.precamres.2015.07.007

    [39]

    Jing X, Yang Z, Evans D A D, et al. , 2019. A pan-latitudinal Rodinia in the Tonian true polar wander frame[J]. Earth and Planetary Science Letters, 530: 115880.

    [40]

    Jing X, Evans D A D, Yang Z, et al. , 2021. Inverted south China A novel configuration for Rodinia and its breakup[J]. Geology, 49: 463–467.

    [41]

    Kemp A I S, Hawkesworth C J, Collins W J, et al. , 2009. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia[J]. Earth and Planetary Science Letters, 284: 455–466. doi: 10.1016/j.jpgl.2009.05.011

    [42]

    Kuzmichev A B, Bibikova E V, Zhuravlev D Z, 2001. Neoproterozoic( ~800 Ma) orogeny in the Tuva-Mongolia massif (Siberia): Island-continent collision at the northeast Rodinia margin[J]. Precambrian Research, 110: 109-126. doi: 10.1016/S0301-9268(01)00183-8

    [43]

    赖绍聪, 张国伟, 杨永成, 等, 1998. 南秦岭勉县—略阳结合带蛇绿岩与岛弧火山岩地球化学及其大地构造意义[J]. 地球化学, 27(3): 283 − 293

    Lai S C, Zhang G W, Yang Y C, et al., 1998. Geochemistry of the ophiolite and island arc volcanic rock in the Mianxian-Lueyang suture zone, Southern Qinling and their tectonic signatures[J]. Geochimica 27(3): 283 − 293 (in Chinese with English abstract).

    [44]

    Lai S C, Li Y F, Qin J F, 2007. Geochemistry and LA-ICP-MS zircon U–Pb dating of the Dongjiahe ophiolite complex from the western Bikou terrane[J]. Science in China (Series D) 50 (Suppl. II): 305 – 313.

    [45]

    李春昱, 刘仰文, 朱宝清, 等, 1978. 秦岭及祁连山构造发展史[J]. 西北地质, 1 – 12.

    Li C Y, Liu Y W , Zhu B Q, et al., 1978. The history of Qinling Mountains and Qilian Mountains of the tectonic developments[J]. Northwestern Geology, (4): 1 – 12(in Chinese with English abstract).

    [46]

    Lieberman B S, 1997. Early Cambrian paleogeography and tectonic history: A biogeographic approach[J]. Geology, 25: 1039–1042.

    [47]

    李怀坤, 张传林, 相振群, 等, 2013. 扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义[J]. 岩石学报, 29(2): 673-697

    Li H K, Zhang C L, Xiang Z Q, et al. , 2013. Zircon and baddeleyite U-Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance[J]. Acta Petrologica Sinica, 29: 673-697 (in Chinese with English Abstract)

    [48]

    李怀坤, 田辉, 周红英, 等, 2016. 扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比: 锆石SHRIMP U-Pb年龄及Hf同位素证据[J]. 地学前缘, 23(6): 186-201

    Li H K, Tian H, Zhou H, et al. , 2016. Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the northern margin of the Yangtze Craton: Constraints from zircon U-Pb ages and Lu-Hf isotopic systematics[J]. Earth Science Frontiers, 23(6): 186-201 (in Chinese with English Abstract)

    [49]

    Li X H, Li Z X, Ge W C, et al. , 2003a. Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca 825 Ma?[J]. Precambrian Research, 122: 45-83. doi: 10.1016/S0301-9268(02)00207-3

    [50]

    Li X H, Li W X, Li Z X, et al. , 2009. Amalgamation between the Yangtze and Cathaysia Blocks in South China: Constraints from SHRIMP U-Pb zircon ages, geochemistry and Nd-Hf isotopes of the Shuangxiwu volcanic rocks[J]. Precambrian Research, 174: 117–128. doi: 10.1016/j.precamres.2009.07.004

    [51]

    Li J Y, Wang X L, Gu Z D, 2018. Early Neoproterozoic arc magmatism of the Tongmuliang Group on the northwestern margin of the Yangtze Block: Implications for Rodinia assembly[J]. Precambrian Research, 309: 181–197 doi: 10.1016/j.precamres.2017.04.040

    [52]

    Li J Y, Wang X L, Wang D, et al. , 2021. Pre-Neoproterozoic continental growth of the Yangtze Block: From continental rifting to subduction–accretion[J]. Precambrian Research, 355: 106081. doi: 10.1016/j.precamres.2020.106081

    [53]

    Li S G, Hou Z H, Yang Y C, et al., 2004. Timing and geochemistry characters of the Sanchazi magmatic arc in Mianlüe tectonic zone, South Qinling[J]. Science in China (Ser. D) 47: 317 – 328.

    [54]

    Li Z X, Zhang L H, Powell C M, 1995. South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia?[J]. Geology, 23: 407–410.

    [55]

    Li Z X, Li X H, Kinny P D, et al. , 2003b. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia[J]. Precambrian Research, 122: 85–109. doi: 10.1016/S0301-9268(02)00208-5

    [56]

    Li Z X, Bogdanova S V, Collins A S, et al. , 2008. Assembly, Configuration, and Break-up History of Rodinia: A Synthesis[J]. Precambrian Research, 160(1-2): 179–210. doi: 10.1016/j.precamres.2007.04.021

    [57]

    Li Z X, Li X H, Zhou H W, et al. , 2002. Grenvillian Continental Collision in South China: New SHRIMP U-Pb Zircon Results and Implications for the Configuration of Rodinia[J]. Geology, 30(2): 163. doi: 10.1130/0091-7613(2002)030<0163:GCCISC>2.0.CO;2

    [58]

    Li Z X, Wartho J A, Occhipinti S, et al. , 2007. Early history of the eastern Sibao Orogen (South China) during the assembly of Rodinia: New mica 40Ar/39Ar dating and SHRIMP U-Pb detrital zircon provenance constraints[J]. Precambrian Research, 159: 79–94. doi: 10.1016/j.precamres.2007.05.003

    [59]

    林振文, 秦艳, 周振菊, 等, 2013. 南秦岭勉略带铧厂沟火山岩锆石U-Pb年代学及地球化学研究[J]. 岩石学报, 29: 83-94

    Lin Z W, Qin Y, Zhou Z J, et al. , 2013. Zircon U-Pb dating and geochemistry of the volcanic rocks at Huachanggou area, Mian-Lue suture, South Qinling[J]. Acta Petrologica Sinica, 29: 83–94

    [60]

    Ling W, Gao S, Zhang B, et al. , 2003. Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent[J]. Precambrian Research, 122: 111–140. doi: 10.1016/S0301-9268(02)00222-X

    [61]

    Lister G S, Forster M A, Rawlings T J. , 2001. Episodicity during orogenesis. In: MILLER, J. A. , HOLDSWORTH, R. E. , BUICK, I. S. & HAND, M. (eds) Continental Reactivaton and Reworking[J]. Geological Society, London, Special Publications, 184: 89–113. doi: 10.1144/GSL.SP.2001.184.01.06

    [62]

    刘仁燕, 牛宝贵, 和政军, 等, 2011. 陕西柞水地区小茅岭复式岩体东段LA-ICP-MS锆石U-Pb定年[J]. 地质通报, 30: 448-460

    Liu R Y, Niu B G, He Z J, et al. , 2011. LA-ICP-MS zircon U-P geochronology of the eastern part of the Xiaomaoling composite intrusives in Zhashui area, Shaanxi, China[J]. Geological Bulletin of China, 30: 448–460

    [63]

    刘春花, 吴才来, 郜源红, 等, 2014. 南秦岭东江口—柞水和梨园堂花岗岩年代学与锆石Lu-Hf同位素组成[J]. 岩石学报, 30: 2402-2420

    Liu C H, Wu C L, Gao Y H, et al. , 2014. LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic system of Dongjiangkou, Zhashui, and Liyuantang granitoid intrusions, South Qinling belt, central China[J]. Acta Petrologica Sinica, 30: 2402–2420

    [64]

    Lu K, Li X H, Zhou J L, et al. , 2020. Early Neoproterozoic assembly of the Yangtze Block decoded from metasedimentary rocks of the Miaowan Complex[J]. Precambrian Research, 346: 105787. doi: 10.1016/j.precamres.2020.105787

    [65]

    Luo B J, Liu R, Zhang H F, et al. , 2018. Neoproterozoic continental back-arc rift development in the Northwestern Yangtze Block: evidence from the Hannan intrusive magmatism[J]. Gondwana Research, 59: 27–42. doi: 10.1016/j.gr.2018.03.012

    [66]

    Marsh J H, Culshaw N G, 2014. Timing and conditions of high-pressure metamorphism in the western Grenville Province: Constraints from accessory mineral composition and phase equilibrium modeling[J]. Lithos, 200-201: 402–417. doi: 10.1016/j.lithos.2014.04.016

    [67]

    Meng Q R, Zhang G W, 1999. Timing of collision of the North and South China blocks: controversy and reconciliation[J]. Geology, 27: 123–126.

    [68]

    Moores E M, 1991. Southwest U. S. - East Antarctic (SWEAT) Connection: A Hypothesis[J]. Geology, 19(5): 425. doi: 10.1130/0091-7613(1991)019<0425:SUSEAS>2.3.CO;2

    [69]

    Niu J, Li Z X, Zhu W, 2016. Palaeomagnetism and geochronology of mid-Neoproterozoic Yanbian dykes, South China: Implications for a c. 820–800 Ma true polar wander event and the reconstruction of Rodinia[J]. Geological Society, London, Special Publications, 424: 191–211. doi: 10.1144/SP424.11

    [70]

    Park J K, Buchan K L, Harlan S S, 1995. A proposed giant radiating dyke swarm fragmented by the separation of Laurentia and Australia based on paleomagnetism of ca. 780 Ma mafic intrusions in western North America[J]. Earth and Planetary Science Letters, 132: 129-139. doi: 10.1016/0012-821X(95)00059-L

    [71]

    Park Y, Swanson-Hysell N L, Xian H, et al. , 2021. A consistently high-latitude South China from 820 to 780 Ma: Implications for exclusion from Rodinia and the feasibility of large-scale true polar wander[J]. Journal of Geophysical Research: Solid Earth, 126: e2020JB021541. doi: 10.1029/2020JB021541

    [72]

    Peng S B, Kusky T M, Jiang X F, et al. , 2012. Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China's amalgamation history with the Rodinian supercontinent[J]. Gondwana Research, 21: 577-594. doi: 10.1016/j.gr.2011.07.010

    [73]

    Qi H, Zhao J H, 2020. Petrogenesis of the Neoproterozoic low-δ18O granitoids at the western margin of the Yangtze Block in South China[J]. Precambrian Research, 351: 105953. doi: 10.1016/j.precamres.2020.105953

    [74]

    Qin K L, Song S G, He S P, 1992. The geological characteristics of the Yudongzi granite-greenstone terrain and its gold-bearing property in Mianluening area Shaanxi[J]. Northwest Geoscience, 13(1), 65 – 74 (in Chinese with English Abstract).

    [75]

    Qiu X F, Ling W L, Liu X M, et al. , 2011. Recognition of Grenvillian Volcanic Suite in the Shennongjia Region and Its Tectonic Significance for the South China Craton[J]. Precambrian Research, 191(3-4): 101-119. doi: 10.1016/j.precamres.2011.09.011

    [76]

    邱艳生, 胡正祥, 杨青雄, 等, 2013. 华南“马槽园群”年代及其地层学意义[J]. 资源环境与工程, 27(3): 328-334 doi: 10.3969/j.issn.1671-1211.2013.03.024

    Qiu Y, Hu Z, Yang Q, et al. , 2013. LA-ICP-MS U-Pb Dating for the Macaoyuan Group in South China and Its Stratigraphic Significance[J]. Resources Environment and Engineering, 27(3): 328-334 (in Chinese with English Abstract) doi: 10.3969/j.issn.1671-1211.2013.03.024

    [77]

    Rino S, Kon Y, Sato W, et al. , 2008. The Grenvillian and Pan-African orogens: World’s largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research, 14: 51–72. doi: 10.1016/j.gr.2008.01.001

    [78]

    Roy A, Kagami H, Yoshida M, et al. , 2006. Rb-Sr and Sm-Nd dating of different metamorphic events from the Sausar Mobile Belt, central India: Implications for Proterozoic crustal evolution[J]. Journal of Asian Earth Sciences, 26: 61-76. doi: 10.1016/j.jseaes.2004.09.010

    [79]

    Rudnick R L, Gao S, 2003. Composition of the continental crust. Treatise on Geochemistry[M]. Elsevier, 3: 1 – 64.

    [80]

    Saito S, Tani K, 2017. Transformation of juvenile Izu–Bonin–Mariana oceanic arc into mature continental crust: an example from the Neogene Izu collision zone granitoid plutons, Central Japan[J]. Lithos, 277: 228–240. doi: 10.1016/j.lithos.2016.07.035

    [81]

    Shi Y, Liu D, Zhang Z, et al. , 2007. SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China: Neoproterozoic Suture on the Northern Margin of the Yangtze Craton[J]. Acta Geologica Sinica, 81: 239-243 (in Chinese with English abstract). doi: 10.1111/j.1755-6724.2007.tb00947.x

    [82]

    Stern R J, 2008. Neoproterozoic crustal growth: The solid Earth system during a critical episode of Earth history[J]. Gondwana Research, 14: 33–50. doi: 10.1016/j.gr.2007.08.006

    [83]

    Sun L, Wang W, Lu G, et al. , 2021. Neoproterozoic geodynamics of South China and implications on the Rodinia configuration: the Kunyang Group revisited[J]. Precambrian Research, 363: 106338. doi: 10.1016/j.precamres.2021.106338

    [84]

    Sun L, Wang W, Pandit M, et al. , 2022. Geochemical and detrital zircon age constraints on Meso- to Neoproterozoic sedimentary basins in the southern Yangtze Block: Implications on Proterozoic geodynamics of South China and Rodinia configuration[J]. Precambrian Research, 378: 106779. doi: 10.1016/j.precamres.2022.106779

    [85]

    Sun Z M, Wang X L, Qi L, et al. , 2018. Formation of the Neoproterozoic Ophiolites in Southern China: New Constraints from Trace Element and PGE Geochemistry and Os Isotopes[J]. Precambrian Research, 309: 88-101. doi: 10.1016/j.precamres.2017.12.042

    [86]

    Torsvik T H, Ashwal L D, Tucker R D, et al. , 2001. Neoproterozoic geochronology and palaeogeography of the Seychelles microcontinent: The India link[J]. Precambrian Research, 100: 47-59.

    [87]

    Tucker R D, Ashwal L D, Torsvik T H, 2001. U-Pb geochronology of Seychelles granitoids: A Neoproterozoic continental arc fragment[J]. Earth and Planetary Science Letters, 187: 27-38. doi: 10.1016/S0012-821X(01)00282-5

    [88]

    王涛, 王宗起, 闫全人, 等, 2011. 南秦岭白水江群变基性火山岩块体的形成时代及其地球化学特征[J]. 岩石学报, 27(3): 645-656

    Wang T, Wang Z, Yan Q, et al. , 2011. The formation age and geochemical characteristics of the metavolcanic rock blocks of the Baishuijiang Group in South Qinling[J]. Acta Petrologica Sinica, 27(3): 645-656 (in Chinese with English Abstract)

    [89]

    Wang X L, Liu F, Li J, et al. , 2020. The progressive onset and evolution of Precambrian subduction and plate tectonics[J]. Science China Earth Sciences, 63(12): 2068–2086 (in Chinese). doi: 10.1007/s11430-020-9698-0

    [90]

    Wang X L, Zhou J C, Griffin W L, et al. , 2014. Geochemical zonation across a Neoproterozoic orogenic belt: Isotopic evidence from granitoids and metasedimentary rocks of the Jiangnan orogen, China[J]. Precambrian Research, 242: 154–171. doi: 10.1016/j.precamres.2013.12.023

    [91]

    Wang X L, Zhou J C, Qiu J S, et al. , 2006. LA-ICP-MS U-Pb zircon geochronology of the Neoproterozoic igneous rocks from Northern Guangxi, South China: Implications for tectonic evolution[J]. Precambrian Research, 145: 111–130. doi: 10.1016/j.precamres.2005.11.014

    [92]

    Wang M, Nebel O, Wang C Y, 2016. The flaw in the crustal “zircon archive”: Mixed hf isotope signatures record progressive contamination of late-stage liquid in mafic-ultramafic layered intrusions[J]. Journal of Petrology, 57: 27–52. doi: 10.1093/petrology/egv072

    [93]

    Wang W, Cawood P A, Zhou M F, et al. , 2017. Low-δ18O Rhyolites From the Malani Igneous Suite: A Positive Test for South China and NW India Linkage in Rodinia[J]. Geophysical Research Letters, 40: 10298–10305.

    [94]

    Wang W, Liu S W, Feng Y F, et al. , 2012. Chronology, petrogenesis and tectonic setting of the Neoproterozoic Tongchang dioritic pluton at the northwestern margin of the Yangtze Block: Constraints from geochemistry and zircon U-Pb-Hf isotopic systematics[J]. Gondwana Research, 22: 699–716. doi: 10.1016/j.gr.2011.11.015

    [95]

    Wang X C, Li X H, Li W X, et al. , 2008. The Bikou basalts in the northwestern Yangtze block, South China: Remnants of 820–810 Ma continental flood basalts?[J]. Bulletin of the Geological Society of America, 120: 1478–1492. doi: 10.1130/B26310.1

    [96]

    王孝磊, 周金城, 陈昕, 等, 2017. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 36(5): 714-735

    Wang X, Zhou J, Chen X, et al. , 2017. Formation and Evolution of the Jiangnan Orogen[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(5): 714-735

    [97]

    Wu L G, Chen Y, Palin R M, et al. , 2024. Reinitiation of modern-style plate tectonics in the Early Neoproterozoic: Evidence from a ∼930 Ma blueschist-facies terrane in South China[J]. Precambrian Research, 401: 107276. doi: 10.1016/j.precamres.2023.107276

    [98]

    Wu R X, Zheng Y F, Wu Y B, et al. , 2006. Reworking of juvenile crust: Element and isotope evidence from Neoproterozoic granodiorite in South China[J]. Precambrian Research, 146: 179–212. doi: 10.1016/j.precamres.2006.01.012

    [99]

    Wu P, Zhang S B, Zheng Y F, et al. , 2021. The accretion history of the South China Block at its northwest margin in the Neoproterozoic: records from the Changba Complex in the Mian-Lue Zone[J]. Precambrian Research, 352: 106006. doi: 10.1016/j.precamres.2020.106006

    [100]

    Wu P, Zhang S B, Li Z X, et al. , 2023. Secular change in the nature of mantle and tectonic evolution of northwestern margin of the Yangtze Block during Neoproterozoic: Constraints from the mafic intrusions and associated granitoids of the Hannan and Xiaomoling complexes[J]. Precambrian Research, 393: 107094. doi: 10.1016/j.precamres.2023.107094

    [101]

    Wu P, Zhang S B, Zheng Y F, et al. , 2020. The occurrence of Neoproterozoic low δ18O igneous rocks in the northwestern margin of the South China Block: Implications for the Rodinia configuration[J]. Precambrian Research, 347: 105841. doi: 10.1016/j.precamres.2020.105841

    [102]

    Wu P, Zhang S B, Zheng Y F, et al. , 2019. Amalgamation of South China into Rodinia during the Grenvillian Accretionary Orogeny: Geochemical Evidence from Early Neoproterozoic Igneous Rocks in the Northern Margin of the South China Block[J]. Precambrian Research, 321: 221-243. doi: 10.1016/j.precamres.2018.12.015

    [103]

    Wu Y B, Gao S, Zhang H F, et al., 2012. Geochemistry and zircon U-Pb geochronology of Paleoproterozoic arc related granitoid in the Northwestern Yangtze Block and its geological implications[J]. Precambrian Research, 200–203: 26 – 37.

    [104]

    Xian H, Zhang S, Li H, et al. , 2020. Geochronological and palaeomagnetic investigation of the Madiyi Formation, lower Banxi Group, South China: Implications for Rodinia reconstruction[J]. Precambrian Research, 336: 105494. doi: 10.1016/j.precamres.2019.105494

    [105]

    Xu J F, Castillo P R, Li X H, et al. , 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean[J]. Earth and Planetary Science Letters, 198: 323–337. doi: 10.1016/S0012-821X(02)00536-8

    [106]

    徐学义, 夏林圻, 陈隽璐, 等, 2009. 扬子地块北缘西乡群孙家河组火山岩形成时代及元素地球化学研究[J]. 岩石学报, 25, 3309 − 3326.

    Xu X Y, Xia L Q, Chen J L, et al., 2009. Zircon U-Pb dating and geochemical study of volcanic rocks Group in northern margin of Yangtze Plate in from Sunjiahe Formation of Xixiang[J]. Acta Petrologica Sinica, 25: 3309 − 3326 (in Chinese with English abstract).

    [107]

    阎明, 刘树文, 李秋根, 等, 2014. 南秦岭迷魂阵岩体LA-ICP-Ms U-Pb年代学和Lu-Hf同位素特征[J]. 岩石学报, 30: 390 − 400

    Yan M, Liu S W, Li Q G, et al., 2014. LA-ICP-MS zircon U-Pb chronology and Lu-Hf isotopic features of the Mihunzhen pluton in the South Qinling tectonic belt[J]. Acta Petrologica Sinica. 30: 390 − 400 (in Chinese with English abstract).

    [108]

    闫全人, 王宗起, 闫臻, 等, 2007. 秦岭勉略构造混杂带康县—勉县段蛇绿岩块—铁镁质岩块的SHRIMP年代及其意义[J]. 地质论评, 53: 755-764

    Yan Q R, Wang Z Q, Yan Z, et al. , 2007. SHRIMP analyses for ophiolitic-mafic blocks in the Kangxian-Mianxian section of the Mianxian-Lueyang melange: their geological implications[J]. Geological Review, 53: 755–764

    [109]

    Yan Q, Hanson A D, Wang Z, et al. , 2004, Neoproterozoic subduction and rifting on the northern margin of the Yangtze plate, China: Implications for Rodinia reconstruction[J]. International Geology Review, 46: 817–832. doi: 10.2747/0020-6814.46.9.817

    [110]

    Yang Z N, Yang K G, Polat A, et al. , 2018. Early crustal evolution of the eastern Yangtze Block: evidence from detrital zircon U-Pb ages and Hf isotopic composition of the Neoproterozoic Huashan Group in the Dahongshan area[J]. Precambrian Research, 309: 248–270. doi: 10.1016/j.precamres.2017.05.011

    [111]

    Yang Z, Cawood P A, Zi J W, et al. , 2024. Mid-Neoproterozoic (ca. 845 Ma) metamorphism of the southwestern Yangtze Block and its tectonic implications[J]. Precambrian Research, 400: 107267. doi: 10.1016/j.precamres.2023.107267

    [112]

    杨志军, 2021. 南秦岭陡岭地块新元古代岩浆作用及地质意义[D]. 西安: 长安大学(西安).

    Yang Z J, 2021. Neoproterozoic magmatism of Douling block in South Qinling and its geological significance[D]. Xi’an: Chang’an University(Xi’an)(in Chinese with English abstract).

    [113]

    叶霖, 程增涛, 陆丽娜, 等, 2009. 陕南勉略宁地区铜厂闪长岩岩石地球化学及SHRIMP锆石U-Pb同位素年代学[J]. 岩石学报, 25(11): 2866-2876

    Ye L, Cheng Z, Lu L, et al. , 2009. Petrological geochronology and zircon SHRIMP U-Pb of Tongchang diorites, Mianluening area, Southern Shaanxi province, China[J]. Acta Petrologica Sinica, 25(11): 2866-2876

    [114]

    Ye M F, Li X H, Li W X, et al. , 2007. SHRIMP Zircon U-Pb Geochronological and Whole-Rock Geochemical Evidence for an Early Neoproterozoic Sibaoan Magmatic Arc along the Southeastern Margin of the Yangtze Block[J]. Gondwana Research, 12(1-2): 144-156. doi: 10.1016/j.gr.2006.09.001

    [115]

    Zhang G W, Meng Q R, Lai S C, 1995. Tectonics and structure of the Qinling Orogenic belt[J]. Science China (Ser. B), 38: 1379-1394 (in Chinese).

    [116]

    张少兵, 吴鹏, 郑永飞, 2019. 罗迪尼亚超大陆聚合在华南陆块北缘的镁铁质岩浆岩记录[J]. 地球科学, 44(12): 4157-4166

    Zhang S B, Wu P, Zheng Y F, 2019. Mafic Magmatic Records of Rodinia Amalgamation in the Northern Margin of the South China Block[J]. Earth Science, 44(12): 4157-4166

    [117]

    Zhang S B, Wu R X, Zheng Y F, 2012. Neoproterozoic continental accretion in South China: Geochemical evidence from the Fuchuan ophiolite in the Jiangnan orogen[J]. Precambrian Research, 220–221: 45 – 64.

    [118]

    Zhang S B, Zheng Y F, Wu P, et al. , 2020. The nature of subduction system in the Neoarchean: Magmatic records from the northern Yangtze Craton, South China[J]. Precambrian Research, 347: 105834. doi: 10.1016/j.precamres.2020.105834

    [119]

    张宗清, 唐索寒, 张国伟, 等, 2005. 勉县—略阳蛇绿混杂岩带镁铁质—安山质火山岩块年龄和该带构造演化的复杂性[J]. 地质学报, 79: 531-539

    Zhang Z Q, Tang S H, Zhang G W, et al. , 2005. Ages of metamorphic mafic-andesitic volcanic rock blocks and tectonic evolution complexity of Mianxian-Lueyang ophiolitic melange belt[J]. Acta Geologica Sinica, 79: 531–539

    [120]

    Zhao J H, Zhou M F, Yan D P, et al. , 2008. Zircon Lu-Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China[J]. Precambrian Research, 163: 189–209. doi: 10.1016/j.precamres.2007.11.003

    [121]

    Zhao J H, Zhou M F, Yan D P, et al. , 2011. Reappraisal of the ages of Neoproterozoic strata in South China: No connection with the Grenvillian orogeny[J]. Geology, 39: 299–302.

    [122]

    Zhao J H, Zhou M F, 2008. Neoproterozoic adakitic suite at the northwestern margin of the Yangtze Block, China: evidence for partial melting of thickened lower crust and secular crustal evolution[J]. Lithos, 104: 231–248. doi: 10.1016/j.lithos.2007.12.009

    [123]

    Zhao J H, Zhou M F, 2009. Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China[J]. Lithos, 107, 152 – 168.

    [124]

    Zheng Y F, Wu R X, Wu Y B. , et al. , 2008. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China[J]. Precambrian Research, 163: 351–383. doi: 10.1016/j.precamres.2008.01.004

    [125]

    Zheng Y F, Zhao G, 2020. Two styles of plate tectonics in Earth’s history[J]. Science Bulletin, 65: 329–334. doi: 10.1016/j.scib.2018.12.029

    [126]

    Zheng Y F, Wu Y B, Gong B, et al., 2007. Tectonic Driving of Neoproterozoic Glaciations: Evidence from Extreme Oxygen Isotope Signature of Meteoric Water in Granite[J]. Earth and Planetary Science Letters, 256, 196 − 210.

    [127]

    Zhou M F, Kennedy A K, Sun M, et al. , 2002a. Neoproterozoic arc-related mafic intrusions along the Northern Margin of South China: implications for the Accretion of Rodinia[J]. The Journal of Geology, 110: 611-618. doi: 10.1086/341762

    [128]

    Zhou M F, Yan D P, Kennedy A K, et al. , 2002b. SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China[J]. Earth and Planetary Science Letters, 196: 51–67. doi: 10.1016/S0012-821X(01)00595-7

    [129]

    Zhou M F, Yan D P, Wang C L, et al. , 2006. Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): Implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China[J]. Earth and Planetary Science Letters, 248: 286-300. doi: 10.1016/j.jpgl.2006.05.032

    [130]

    Zhou G, Wu Y, Li L, et al. , 2018a. Identification of ca. 2.65 Ga TTGs in the Yudongzi complex and its implications for the early evolution of the Yangtze Block[J]. Precambrian Research, 314: 240–263. doi: 10.1016/j.precamres.2018.06.011

    [131]

    Zhou G Y, Wu Y B, Zhang W X, et al. , 2019. Circa 900 Ma low δ18O A-type rhyolite in the northern Yangtze Block: Genesis and geological significance[J]. Precambrian Research, 324: 155–169. doi: 10.1016/j.precamres.2019.01.015

    [132]

    Zhou J L, Li X H, Tang G Q, et al. , 2018b. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications[J]. Journal of Asian Earth Sciences, 151: 101-111. doi: 10.1016/j.jseaes.2017.10.029

    [133]

    Zhou J L, Li X H, Tang G Q, et al. 2018. New evidence for a continental rift tectonic setting of the Neoproterozoic Imorona-Itsindro Suite (Central Madagascar)[J]. Precambrian Research, 306: 94 – 111.

    [134]

    Zhu Y, Lai S, Xie W, et al. , 2023. Neoproterozoic tectonic transition from subduction to back-arc extension along the western Yangtze Block, South China: Petrological evidence of Nb-enriched basalts and arc-type intrusive rocks[J]. Gondwana Research, 122: 163-180. doi: 10.1016/j.gr.2023.05.024

    [135]

    Zong K Q, Klemd R, Yuan Y, et al. , 2017. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB)[J]. Precambrian Research, 290: 32–48. doi: 10.1016/j.precamres.2016.12.010

    [136]

    赖绍聪, 李永飞, 秦江锋, 2007. 碧口群西段董家河蛇绿岩地球化学及LA-ICP-MS锆石U-Pb定年[J]. 中国科学(D辑), 37(增刊): 262-270.

    [137]

    秦克令, 何世平, 宋述光, 1992. 碧口地体同位素地质年代学及其意义[J]. 西北地质科学, 13(2): 97-110.

    [138]

    王孝磊, 刘福来, 李军勇, 等, 2020. 前寒武纪俯冲和板块构造的渐进式演变[J]. 中国科学: 地球科学, 50(12): 1947-1968.

    [139]

    张国伟, 孟庆任, 赖绍聪, 1995. 秦岭造山带的结构构造[J]. 中国科学(B辑), 25(9): 994 − 1003.

  • 加载中

(5)

计量
  • 文章访问数:  647
  • PDF下载数:  421
  • 施引文献:  0
出版历程
收稿日期:  2023-12-28
修回日期:  2024-01-13
录用日期:  2024-02-26
刊出日期:  2024-03-31

目录