Paleoclimate evolution and origin of organic carbon isotope variations during the Ordovician–Silurian transition in the Upper Yangtze area
-
摘要:
奥陶纪—志留纪是地球历史上的一个重要转折期,古气候发生了剧烈变化,其中的晚奥陶世赫南特阶碳同位素漂移事件(HICE)广为人知,但关于古气候变化和碳同位素漂移的原因及其相互关联尚不明晰。以上扬子焦石坝地区JY4井五峰—龙马溪组黑色页岩为研究对象,利用有机碳含量、有机碳同位素(δ13Corg)、主量元素和微量元素分析,计算出不同页岩段的化学蚀变指数(CIA),结合生物地层学,发现WF2—WF4段对应的古气候条件由温暖潮湿逐渐转变为寒冷干燥,LM1—LM4段仍为寒冷干燥的古气候,但化学风化作用向上呈现出不断增强的趋势,LM5段开始逐渐过渡至温暖潮湿的古气候环境,LM6—LM7及其以上段则出现了一次明显的转变为寒冷干燥古气候条件的幕式波动。元素地球化学指标表明,WF2—WF4段页岩的沉积环境逐渐由氧化转变为还原,但观音桥段海水中氧含量迅速上升;LM1—LM3段页岩沉积于极度缺氧甚至硫化的沉积环境中,向上LM4段氧含量逐渐增加,大体上逐渐由缺氧向贫氧、次贫氧以及富氧条件过渡。观音桥段δ13Corg异常“正漂”可能主要与有机碳埋藏及其氧化溶解有关,化学风化作用导致的营养物质输入增强也具有一定的作用,而龙马溪组黑色页岩段δ13Corg异常“负漂”的出现则可能与大规模海侵导致12C重新回到海洋碳库有关。
Abstract:The Ordovician–Silurian transition is an important period in Earth’s history, marked by drastic changes in paleoclimate and the well-known Hirnantian isotope carbon excursion (HICE) in the Late Ordovician. However, the causes of paleoclimate changes and carbon isotope excursions, as well as their correlations, are still unclear. Based on the analysis of the total organic carbon (TOC) contents, organic carbon isotopes (δ13Corg), as well as major and trace elements, the chemical index of alteration (CIA) values of the Wufeng-Longmaxi Formation black shales of Well JY4 in Jiaoshiba area in the upper Yangtze region were calculated. Combined with biostratigraphy, it is found that the paleoclimate conditions of WF2–WF4 members gradually changed from warm and humid to cold and arid. The paleoclimate of LM1–LM4 members remained cold and arid, with an increasing trend upward in chemical weathering. The LM5 Member marked a gradual transition back to warm and humid climate environment, while the paleocimate conditions of LM6–LM7 and their above members showed an episodic fluctuation to cold and arid. The elemental geochemical proxies indicate that the sedimentary environment of the WF2–WF4 members shifted from oxic to anoxic conditions, with a rapid increase in oxygen content in Guanyinqiao Formation. The shales of LM1–LM3 members were deposited in an extremely anoxic and sulfidic environment, with oxygen content gradually increasing upward in the LM4 Member, transitioning from anoxic to suboxic, hypoxic, and finally oxidized conditions. The "positive drift" of δ13Corg in Guanyinqiao Formation is likely related to the burial and oxidation of organic carbon, with enhanced nutrient input from chemical weathering also playing a role. The subsequent "negative drift" in the black shale of Longmaxi Formation may be associated with the return of 12C to the marine carbon pool due to large-scale transgression.
-
Key words:
- Wufeng-Longmaxi Formation /
- paleoclimate /
- carbon isotope /
- paleoenvironment /
- geochemistry
-
-
图 1 (A) 晚奥陶世(距今约445 Ma)全球古地理图(Seton et al., 2023,有改动);(B) 华南地区奥陶纪—志留纪转折期岩相古地理分布与研究剖面位置(Lu et al., 2022, 有改动)
Figure 1.
-
[1] Ahm A S C,Bjerrum C J,Hammarlund E U,2017. Disentangling the record of diagenesis,local redox conditions,and global seawater chemistry during the latest Ordovician glaciation[J]. Earth and Planetary Science Letters,459:145 − 156. doi: 10.1016/j.jpgl.2016.09.049
[2] Barash,2014. Environmental conditions of the mass extinction of marine biota at the end of the Ordovician[J]. Doklady Earth Sciences,456(2):667 − 669. doi: 10.1134/S1028334X14060312
[3] Belcher K,2008. Species abundance changes during mass extinction and the inverse Signor–Lipps effect:Apparently abrupt graptolite mass extinctions as an artifact of sampling[D]. Buffalo:State University of New York at Buffalo:1 − 90.
[4] Bergström S M,Saltzman M R,Schmitz B,2006. First record of the Hirnantian (Upper Ordovician) δ13C excursion in the North American Midcontinent and its regional implications[J]. Geological Magazine,143(5):657 − 678. doi: 10.1017/S0016756806002469
[5] Brenchley P J,Carden G A,Hints L,et al.,2003. High-resolution stable isotope stratigraphy of Upper Ordovician sequences:Constraints on the timing of bioevents and environmental changes associated with mass extinction and glaciation[J]. Geological Society of America Bulletin,115(1):89 − 104. doi: 10.1130/0016-7606(2003)115<0089:HRSISO>2.0.CO;2
[6] Brenchley P J,Marshall J D,Carden G A F,et al.,1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period[J]. Geology,22(4):295 − 298. doi: 10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2
[7] Buffett B A,Zatsepina O Y,1999. Metastability of gas hydrate[J]. Geophysical Research Letters,26(19):2981 − 2984. doi: 10.1029/1999GL002339
[8] Buggisch W,Joachimski M M,Lehnert O,et al.,2010. Did intense volcanism trigger the first Late Ordovician icehouse?[J]. Geology,38(4):327 − 330. doi: 10.1130/G30577.1
[9] 陈超,2018. 川南−黔北地区晚奥陶世—早志留世地史转折期古海洋、古气候演变及烃源岩成因机制研究[D]. 武汉:中国地质大学:112 − 115.
Chen C,2018. Research on paleoceanopraphy,paleoclimate and formation mechanism of source rock during geologic transition period from Late Ordovician to Early Silurian in southern Sichuan Province-northern Guizhou Province,South China[D]. Wuhan:China University of Geoscience:112 − 115 (in Chinese with English abstract).
[10] 陈旭,樊隽轩,陈清,等,2014. 论广西运动的阶段性[J]. 中国科学:地球科学,44(5):842 − 850.
Chen X,Fan J X,Chen Q,et al., 2014. Toward a stepwise Kwangsian Orogeny[J]. Science China:Earth Sciences,57:379 − 387 (in Chinese with English abstract).
[11] Chen X,Melchin M J,Sheets H D,et al.,2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China[J]. Journal Information,79(5):842 − 861.
[12] Chen X,Rong J Y,Li Y,et al.,2004. Facies patterns and geography of the Yangtze region,South China,through the Ordovician and Silurian transition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,204(3):353 − 372.
[13] 成俊峰,董少峰,陈中阳,2020. 塔里木盆地顺北地区中—晚奥陶世稳定碳同位素特征及意义[J]. 地层学杂志,44(4):366 − 372.
Cheng J F,Dong S F,Chen Z Y,2020. Characteristics and correlation of the stable carbon isotope records in the Middle to Late Ordovician carbonates in the Shunbei Area,Tarim Basin,NW China[J]. Journal of Stratigraphy,44(4):366 − 372 (in Chinese with English abstract).
[14] Dahl T W,Canfield D E,Rosing M T,et al.,2011. Molybdenum evidence for expansive sulfidic water masses in ~750 Ma oceans[J]. Earth and Planetary Science Letters,311(3-4):264 − 274. doi: 10.1016/j.jpgl.2011.09.016
[15] 董振国,赵伟,郭军军,等,2020. 胜利煤田胜利组褐煤地球化学特征及古环境地质意义[J]. 煤炭科学技术,48(11):172 − 181.
Dong Z G,Zhao W,Guo J J,et al.,2020. Geochemical characteristics of lignite from Shengli Formation and Paleo-environmental geological significance in Shengli Coalfield[J]. Coal Science and Technology,48(11):172 − 181 (in Chinese with English abstract).
[16] Elrick M,Reardon D,Labor W,et al.,2013. Orbital-scale climate change and glacioeustasy during the early Late Ordovician (pre-Hirnantian) determined from δ18O values in marine apatite[J]. Geology,41(7):775 − 778. doi: 10.1130/G34363.1
[17] Fan J X,Peng P A,Melchin M J,2009. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary,Yichang,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,276:160 − 169.
[18] Finnegan S,Bergmann K,Eiler J M,et al.,2011. The magnitude and duration of Late Ordovician-Early Silurian Glaciation[J]. Science,331(6019):903 − 906. doi: 10.1126/science.1200803
[19] Fedo C M,Young G M,Nesbitt G M,1997. Paleoclimatic control on the composition of the paleoproterozoic serpent formation,huronian supergroup,Canada:A greenhouse to icehouse transition[J]. Precambrian Research,86:201 − 223. doi: 10.1016/S0301-9268(97)00049-1
[20] 冯增昭,彭勇民,金振奎,等,2001. 中国南方中及晚奥陶世岩相古地理[J]. 古地理学报,3(4):10 − 24.
Feng Z Z,Peng Y M,Jin Z K,et al.,2001. Lithofacies palaeogeography of the Middle and Late Ordovician in South China[J]. Journal of Palaeogeography(Chinese Edition),3(4):10 − 24 (in Chinese with English abstract).
[21] Gao P,He Z L,Lash Gary G,et al.,2021. Controls on silica enrichment of lower cambrian organic-rich shale deposits[J]. Marine and Petroleum Geology,130:105126. doi: 10.1016/j.marpetgeo.2021.105126
[22] Gao P,Xiao X M,Hu D F,et al.,2024. Comparison of silica diagenesis between the Lower Cambrian and Lower Silurian shale reservoirs in the middle-upper Yangtze Platform (South China)[J]. AAPG Bulletin,108:971 − 1003. doi: 10.1306/01242422096
[23] Ge X Y,Mou C L,Yu Q,et al. 2019. The geochemistry of the sedimentary rocks from the Huadi No. 1 well in the Wufeng-Longmaxi formations (Upper Ordovician-Lower Silurian),South China,with implications for paleoweathering,provenance,tectonic setting and paleoclimate[J]. Marine and Petroleum Geology,103:646 − 660.
[24] 葛祥英,牟传龙,余谦,等,2021. 四川盆地东部五峰组—龙马溪组黑色页岩有机质富集规律探讨[J]. 沉积与特提斯地质,41(3):418 − 435.
Ge X Y,Mou C L,Yu Q,et al.,2021. Study on the enrichment of organic materials in black shales of the Wufeng to Longmaxi Formations in eastern Sichuan Basin[J]. Sedimentary Geology and Tethyan Geology,41(3):418 − 435 (in Chinese with English abstract).
[25] Gibbs M T,Barron E J,Kump L R,1997. An atmospheric pCO2 threshold for glaciation in the Late Ordovician[J]. Geology,25(5):447 − 450. doi: 10.1130/0091-7613(1997)025<0447:AAPCTF>2.3.CO;2
[26] Gorjan P,Kaiho K,Fike D A,et al., 2012. Carbon-and sulfur-isotope geochemistry of the Hirnantian (Late Ordovician) Wangjiawan (Riverside) section,South China:Global correlation and environmental event interpretation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,337–338:14 − 22.
[27] Gradstein F M,Ogg J G,Smith A G,2004. A Geologic Time Scale 2004[M]. Cambridge:Cambridge University Press.
[28] Hammarlund E U,Loydell D K,Nielsen A T,et al.,2019. Early Silurian δ13Corg excursions in the foreland basin of Baltica,both familiar and surprising[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,526:126 − 135.
[29] Harper D A T,Rong J Y,1995. Patterns of change in the brachiopod faunas through the Ordovician-Silurian interface[J]. Modern Geology,20(1):83 − 100.
[30] 何龙,王云鹏,陈多福,2019. 川南地区晚奥陶—早志留世沉积环境与古气候的地球化学特征[J]. 地球化学,48(6):555 − 566.
He L,Wang Y P,Chen D F,2019. Geochemical features of sedimentary environment and paleoclimate during Late Ordovician to Early Silurian in southern Sichuan Basin[J]. Geochimica,48(6):555 − 566 (in Chinese with English abstract).
[31] 何龙,王云鹏,陈多福,2021. 四川盆地晚奥陶世有机碳、氮同位素异常及其古环境意义[J]. 地球化学,50(6):623 − 634.
He L,Wang Y P,Chen D F,2021. Organic carbon and nitrogen isotope anomalies during the late Ordovician in Sichuan Basin,and their implications for the palaeoenvironment[J]. Geochimica,50(6):623 − 634 (in Chinese with English abstract).
[32] Herrmann A D,Patzkowsky M E,Pollard D,2003. Obliquity forcing with 8-12 times preindustrial levels of atmospheric pCO2 during the Late Ordovician glaciation[J]. Geology,31(6):485 − 488. doi: 10.1130/0091-7613(2003)031<0485:OFWTPL>2.0.CO;2
[33] 黄福喜,陈洪德,侯明才,等,2011. 中上扬子克拉通加里东期 (寒武—志留纪)沉积层序充填过程与演化模式[J]. 岩石学报,27(8):2299 − 2317.
Huang F X,Chen H D,Hou M C,et al.,2011. Filling process and evolutionary model of sedimentary sequence of Middle-Upper Yangtze craton in Caledonian (Cambrian-Silurian)[J]. Acta Petrologica Sinica,27(8):2299 − 2317 (in Chinese with English abstract).
[34] Jiang G Q,Kaufman A J,Christie-Blick N,et al.,2007. Carbon isotope variability across the Ediacaran Yangtze platform in South China:Implications for a large surface-to-deep ocean δ13C gradient[J]. Earth and Planetary Science Letters,261:303 − 320. doi: 10.1016/j.jpgl.2007.07.009
[35] Jin C S,Liao Z W,Lash G G,2021. High-frequency redox variation across the Ordovician–Silurian transition,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,566:110218.
[36] Kennedy M J,Wagner T. 2011. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean[J]. Proceedings of the National Academy of Sciences,108(24):9776 − 9781.
[37] Kendall B,Komiya T,Lyons T W,et al.,2015. Uranium and molybdenum isotope evidence for an episode of widespread ocean oxygenation during the late Ediacaran Period[J]. Geochimica et Cosmochimica Acta,156:173 − 193. doi: 10.1016/j.gca.2015.02.025
[38] Kump L R,Arthur M A,Patzkowsky M E,et al.,1999. A weathering hypothesis for glaciation at high atmospheric pCO2 during the Late Ordovician[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,2(1):173 − 187.
[39] Laporte D F,Holmden C,Patterson W P,et al.,2009. Local and global perspectives on carbon and nitrogen cycling during the Hirnantian glaciation[J]. Palaeogeography,Palaeoclimataology,Palaeoecology,276(1):182 − 195.
[40] Le Heron D P,Craig J,Etienne J L. Ancient glaciations and hydrocarbon accumulations in North Africa and the Middle East[J]. Earth-Science Reviews,2009,93:47 − 76.
[41] Lenton T M,Crouch M,Johnson M,et al.,2012. First plants cooled the Ordovician[J]. Nature Geoscience,5(2):86 − 89. doi: 10.1038/ngeo1390
[42] 李超,2019. 华南上扬子台地中奥陶统—兰多维列统碳同位素地层学[D]. 合肥:中国科学技术大学:48 − 53.
Li C,2019. Middle Ordovician-Llandovery carbon isotope chemostratigraphy in Upper Yangtze Platform,South China[D]. Hefei:University of Science and Technology of China:48 − 53 (in Chinese with English abstract).
[43] 李超,武学进,樊隽轩,等,2019. 贵州习科 1 井奥陶—志留系之交的碳同位素化学地层学[J]. 地球化学,48(6):533 − 543.
Li C,Wu X J,Fan J X,et al.,2019. Carbon isotope chemostratigraphy of the Ordovician-Silurian transition interval of the Xike-1 drillcore in Guizhou,China[J]. Geochimica,48(6):533 − 543 (in Chinese with English abstract).
[44] 李刚,赵迪斐,郭英海,2018. 川东南地区龙马溪组页岩笔石与沉积环境的关系[J]. 科学技术与工程,18(12):16 − 23.
Li G,Zhao D F,Guo Y H,2018. The relationship between graptolite of Longmaxi shale and sedimentary environment in southeastern Sichuan[J]. Science Technology and Engineering,18(12):16 − 23 (in Chinese with English abstract).
[45] Li Y F,Zhang T W,Shen B J,et al.,2021. Carbon and sulfur isotope variations through the Upper Ordovician and Lower Silurian of South China linked to volcanism[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,567:110285.
[46] 刘宝珺,周名魁,王汝植,1990. 中国南方早古生代古地理轮廓及构造演化[J]. 地球学报,11(1):97 − 98.
Liu B J,Zhou M K,Wang R Z,1990. Early Palaeozoic palaeogeography and tectonic evolution of South China[J]. Acta Geoscientica Sinica,11(1):97 − 98 (in Chinese with English abstract).
[47] 刘本培,全秋琦,1996. 地史学教程[M]. 3版. 北京:地质出版社:116 − 121.
Liu B P,Quan Q Q. 1996. Historical Geology[M]. 3th ed. Beijing:Geology Press:116 − 121 (in Chinese).
[48] 刘成东,黄晓宇,万建军,等,2023. 内蒙古巴彦乌拉铀矿床赛汉组砂岩地球化学特征及古环境意义[J]. 东华理工大学学报:自然科学版, 46(2):101 − 112.
Liu C D,Huang X Y,Wan J J,et al.,2023. Geochemical characteristics and paleoenvironmental significance of the Saihan Formation in Bayanwula Uranium Deposit, Inner Mongolia[J]. Journal of East China University of Technology(Natural Science), 46(2):101 − 112 (in Chinese with English abstract).
[49] Liu Y,Li C,Fan J X,et al.,2020. Elevated marine productivity triggered nitrogen limitation on the Yangtze Platform (South China) during the Ordovician-Silurian transition[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,554:109833.
[50] Long D G F,1993. Oxygen and carbon isotopes and event stratigraphy near the Ordovician–Silurian boundary,Anticosti Island,Quebec[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,104:49 − 59.
[51] Lu X Z,Kendall B,Stein H J,et al.,2017. Marine redox conditions during deposition of Late Ordovician and Early Silurian organic-rich mudrocks in the Siljan ring district,central Sweden[J]. Chemical Geology,457:75 − 94. doi: 10.1016/j.chemgeo.2017.03.015
[52] 卢贤志,沈俊,郭伟,等,2021. 中上扬子地区奥陶纪—志留纪之交火山作用对有机质富集的影响[J]. 地球科学,46(7):2329 − 2340.
Lu X Z,Shen J,Guo W,et al.,2021. Influence of mercury geochemistry and volcanism on the enrichment of organic matter near the Ordovician Silurian Transition in the Middle and Upper Yangtze[J]. Earth Science,46(7):2329 − 2340 (in Chinese with English abstract).
[53] Lu Y B,Hao F,Shen J,et al.,2022. High-resolution volcanism-induced oceanic environmental change and its impact on organic matter accumulation in the Late Ordovician Upper Yangtze Sea[J]. Marine and Petroleum Geology,136:105482. doi: 10.1016/j.marpetgeo.2021.105482
[54] Lu Y B,Jiang S,Lu Y C,et al.,2019. Productivity or preservation? The factors controlling the organic matter accumulation in the late Katian through Hirnantian Wufeng organic-rich shale,South China[J]. Marine and petroleum geology,109:22 − 35. doi: 10.1016/j.marpetgeo.2019.06.007
[55] Luo G M,Algeo T J,Zhan R B,et al.,2016. Perturbation of the marine nitrogen cycle during the Late Ordovician glaciation and mass extinction[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,448(1):339 − 348.
[56] Lüning S,Craig J,Loydell D K,et al.,2000. Lower Silurian 'hot shales' in North Africa and Arabia:regional distribution and depositional model[J]. Earth-Science Reviews,49(1-4):121 − 200. doi: 10.1016/S0012-8252(99)00060-4
[57] 马奂奂,刘池洋,张龙,等,2019. 鄂尔多斯盆地延长组长7段沉积岩元素地球化学特征及沉积环境分析[J]. 现代地质,33(4):872 − 882.
Ma H H,liu C Y,Zhang L,et al.,2019. Geochemical characteristics and depositional environment implications of sedimentary rocks in the Chang 7 Member of Yanchang Formation in the Ordos Basin[J]. Geosciences,33(4):872 − 882 (in Chinese with English abstract).
[58] Marshall J D,Middleton P D,1990. Changes in marine isotopic composition and the late Ordovician glaciation[J]. Journal of the Geological Society,147(1):1 − 4. doi: 10.1144/gsjgs.147.1.0001
[59] McLennan S M,1993. Weathering and global denudation[J]. Journal of Geology,101:295 − 303. doi: 10.1086/648222
[60] Melchin M J,Holmden C,2006. Carbon isotope chemostratigraphy of the Llandovery in Arctic Canada:Implications for global correlation and sea level change[J]. GFF,128(2):173 − 180. doi: 10.1080/11035890601282173
[61] 牟传龙,葛祥英,余谦,等,2019. 川西南地区五峰—龙马溪组黑色页岩古气候及物源特征:来自新地2井地球化学记录[J]. 古地理学报,21(5):835 − 854.
Mou C L,Ge X Y,Yu Q,et al.,2019. Palaeoclimatology and provenance of black shales from Wufeng—Longmaxi Formations in southwestern Sichuan Province:From geochemical records of Well Xindi—2[J]. Journal of Palaeogeography (Chinese Edition),21(5):835 − 854 (in Chinese with English abstract).
[62] Moulton K,Berner R A,1998. Quantification of the effect of plants on weathering:Studies in Iceland[J]. Geology,26(10):895 − 898. doi: 10.1130/0091-7613(1998)026<0895:QOTEOP>2.3.CO;2
[63] Nesbitt H W,Young G M,1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299(5885):715 − 717. doi: 10.1038/299715a0
[64] Nesbitt H W,Young G M,1996. Petrogenesis of sediments in the absence of chemical weathering of abrasion and sorting on bulk composition and mineralogy[J]. Sedimentology,43:341 − 358. doi: 10.1046/j.1365-3091.1996.d01-12.x
[65] 聂海宽,李东晖,姜涛,等,2020. 基于笔石带特征的页岩等时地层测井划分方法及意义——以四川盆地及其周缘五峰组—龙马溪组为例[J]. 石油学报,41(3):273 − 283.
Nie H K,Li D H,Jiang T,et al.,2020. Logging isochronous stratigraphic division of shale based on characteristics of graptolite zones and its significance:A case study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and its periphery[J]. Acta Petrolei Sinica,41(3):273 − 283 (in Chinese with English abstract).
[66] Qiu Z,Zou C,Mills B J W,et al,2022. A nutrient control on expanded anoxia and global cooling during the Late Ordovician mass extinction[J]. Communications Earth & Environment,3(1):82.
[67] Rafiei M,Kennedy M,2019. Weathering in a world without terrestrial life recorded in the Mesoproterozoic Velkerri Formation[J]. Nature Communications,10:3448. doi: 10.1038/s41467-019-11421-4
[68] Ramstein G,2011. Climates of the earth and cryosphere evolution[J]. Surveys in Geophysics,32(4-5):329 − 350.
[69] Ran B,Liu S G,Jansa L,et al.,2015. Origin of the Upper Ordovician-lower Silurian cherts of the Yangtze block,South China,and their palaeogeographic significance[J]. Journal of Asian Earth Sciences,108:1 − 17. doi: 10.1016/j.jseaes.2015.04.007
[70] Rong J Y,Chen X,Harper D A T,2002. The latest Ordovician Hirnantia Fauna (Brachiopoda) in time and space[J]. Lethaia,35(3):231 − 249. doi: 10.1111/j.1502-3931.2002.tb00081.x
[71] 戎嘉余,陈旭,王怿,等,2011. 奥陶—志留纪之交黔中古陆的变迁:证据与启示[J]. 中国科学:地球科学,41(10):1407 − 1415. doi: 10.1360/zd-2011-41-10-1407
Rong J Y,Chen X,Wang Y,et al.,2011. Northward expansion of Central Guizhou Oldland through the Ordovician and Silurian transition:Evidence and implications[J]. Scientia Sinica Terrae,41(10):1407 − 1415 (in Chinese with English abstract). doi: 10.1360/zd-2011-41-10-1407
[72] 戎嘉余,方宗杰,陈旭,等,1996. 生物复苏——大绝灭后生物演化历史的第一幕[J]. 古生物学报,35(3):259 − 271.
Rong J Y,Fang Z J,Chen X,et al.,1996. Biotic recovery-first episode of evolution[J]. Acta palaeontologica Sinica,35(3):259 − 271 (in Chinese with English abstract).
[73] 戎嘉余,黄冰,2014. 生物大灭绝研究三十年[J]. 中国科学:地球科学,44(3):377 − 404. doi: 10.1360/zd-2014-44-3-377
Rong J Y,Huang B,2014. Study of Mass Extinction over the past thirty years:A synopsis[J]. Scientia Sinica (Terrae),44(3):377 − 404 (in Chinese with English abstract). doi: 10.1360/zd-2014-44-3-377
[74] 戎嘉余,詹仁斌,1999. 华南奥陶、志留纪腕足动物群的更替兼论奥陶纪末冰川活动的影响[J]. 现代地质,13(4):390 − 394.
Rong J Y,Zhan R B,1999. Ordovician-Silurian brachiopod fauna turnover in South China[J]. Geoscience,13(4):390 − 394 (in Chinese with English abstract).
[75] 戎嘉余,詹仁斌,2006. 论大灭绝后的幸存类型、复活效应与避难所[J]. 地学前缘,13(6):187 − 198.
Rong J Y,Zhan R B,2006. Re-evaluation of survivors,Lazarus taxa,and refugia from mass extinction[J]. Earth Science Frontiers,13(6):187 − 198 (in Chinese with English abstract).
[76] Scotese C,Wright N,2018. PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phanerozoic,PALEOMAP Project,Evanston,IL[EB/OL](2018-08-11)[2023-06-22]. https://www.earthbyte.org/paleodem-resource-scotese-and-wright-2018.
[77] Sepkoski J J,1981. A factor analytic description of the Phanerozoic marine fossil record[J]. Paleobiology,7(1):36 − 53. doi: 10.1017/S0094837300003778
[78] Seton M,Williams S E,Domeier M,et al.,2023. Deconstructing plate tectonic reconstructions[J]. Nature Reviews Earth & Environment,4(3):185 − 204.
[79] Shaviv N J,Veizer J,2003. Celestial driver of Phanerozoic climate?[J]. GSA Today,13(7):4 − 10. doi: 10.1130/1052-5173(2003)013<0004:CDOPC>2.0.CO;2
[80] Shen J,Algeo T J,Chen J B,et al.,2019. Mercury in marine Ordovician-Silurian boundary sections of South China is sulfide hosted and non-volcanic in origin[J]. Earth and Planetary Science Letters,511:130 − 140. doi: 10.1016/j.jpgl.2019.01.028
[81] 施振生,袁渊,赵群,等,2022. 川南地区五峰组—龙马溪组沉积期古地貌及含气页岩特征[J]. 天然气地球科学,33(12):1969 − 1985.
Shi Z S,Yuan Y,Zhao Q,et al.,2022. Paleogeomorphology and oil-bearing shale characteristics of the Wufeng-Longmaxi shale in southern Sichuan Basin,China[J]. Natural Gas Geoscience,33(12):1969 − 1985 (in Chinese with English abstract).
[82] Sigurdsson H,1990. Evidence of volcanic loading of the atmosphere and climate response[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,89:277 − 289.
[83] Su W B,Huff W D,Ettensohn F R,et al.,2009. K-bentonite,black-shale and flysch successions at the Ordovician–Silurian transition,South China:Possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana[J]. Gondwana Research,15(1):111 − 130. doi: 10.1016/j.gr.2008.06.004
[84] 孙莎莎,芮昀,董大忠,等,2018. 中、上扬子地区晚奥陶世—早志留世古地理演化及页岩沉积模式[J]. 石油与天然气地质,39(6):1087 − 1106.
Sun S S,Rui Y,Dong D Z,et al.,2018. Paleogeographic evolution of the Late Ordovician-Early Silurian in Upper and Middle Yangtze regions and depositional model of shale[J]. Oil & Gas Geology,39(6):1087 − 1106 (in Chinese with English abstract).
[85] Tosca N J,Johnston D T,Mushegian A,et al.,2010. Clay mineralogy,organic carbon burial,and redox evolution in Proterozoic oceans[J]. Geochimica et Cosmochimica Acta,74:1579 − 1592. doi: 10.1016/j.gca.2009.12.001
[86] Trotter J A,Williams I S,Barnes C R,et al.,2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry[J]. Science,321:550 − 554. doi: 10.1126/science.1155814
[87] 涂珅,2015. 中上扬子区奥陶—志留之交无机碳同位素负漂移事件及其成因探讨[D]. 武汉:中国地质大学:22 − 31.
Tu S,2015. Tu S,2015. The preliminary interpretation of the Negative Excursion Event of Inorganic Carbon Isotopes and the mechanism across the Ordovician-Silurian boundary in the Middle and Upper Yangtze Region[D]. Wuhan:China University of Geoscience:22 − 31 (in Chinese with English abstract).
[88] Underwood C J,Crowley S F,Marshall J D,et al.,1997. High-resolution carbon isotope stratigraphy of the basal Silurian stratotype (Dob’s Linn,Scotland) and its global correlation[J]. Journal of the Geological Society,154(4):709 − 718. doi: 10.1144/gsjgs.154.4.0709
[89] 王红岩,施振生,孙莎莎,2021. 四川盆地及周缘奥陶系五峰组—志留系龙马溪组页岩生物地层及其储集层特征[J]. 石油勘探与开发,48(5):879 − 890.
Wang H Y,Shi Z S,Sun S S,2021. Biostratigraphy and reservoir characteristics of the Ordovician Wufeng-Silurian Longmaxi shale in the Sichuan Basin and surrounding areas,China[J]. Petroleum Exploration and Development,48(5):870 − 890 (in Chinese with English abstract).
[90] Wang K,Chatterton B D E,Wang Y,1997. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks,Yangtze Sea,South China:Implications for CO2 changes during the Hirnantian glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,132:147 − 158.
[91] 汪正江,杨菲,刘家洪,等,2020. 滇东北地区五峰—龙马溪组沉积转换及其页岩气地质意义[J]. 沉积与特提斯地质,40(3):129 − 139.
Wang Z J,Yang F,Liu J H,et al.,2020. Sedimentary transformation of the Wufeng-Longmaxi Formation and its geologic significances of shale gas in Northeast Yunnan[J]. Sedimentary Geology and Tethyan Geology,40(3):129 − 139 (in Chinese with English abstract).
[92] Wu L Y,Lu Y C,Jiang S,et al.,2019. Relationship between the origin of organic-rich shale and geological events of the Upper Ordovician-Lower Silurian in the Upper Yangtze area[J]. Marine and Petroleum Geology,102:74 − 85. doi: 10.1016/j.marpetgeo.2018.11.017
[93] 肖斌,刘树根,冉波,等,2021. 四川盆地北缘五峰组和龙马溪组沉积构造格局研究[J]. 地球科学,46(7):2449 − 2465.
Xiao B,Liu S G,Ran B,et al.,2021. Study on sedimentary tectonic pattern of Wufeng Formation and Longmaxi Formation in the northern margin of Sichuan Basin,South China[J]. Earth Science,46(7):2449 − 2465 (in Chinese with English abstract).
[94] 熊国庆,刘春来,董国明,等,2021. 南大巴山上奥陶统五峰组—下志留统龙马溪组泥岩元素地球化学特征[J]. 沉积与特提斯地质,41(3):398 − 417.
Xiong G Q,Liu C L,Dong G M,et al.,2021. A study of element geochemistry of mudstones of upper Ordovician Wufeng Formation and lower Silurian Longmaxi Formation in southern Daba Mountain[J]. Sedimentary Geology and Tethyan Geology,41(3):398 − 417 (in Chinese with English abstract).
[95] Yan D T,Chen D Z,Wang Q C,et al.,2010. Large-scale climatic fluctuations in the latest Ordovician on the Yangtze block,south China[J]. Geology,38(7):599 − 602. doi: 10.1130/G30961.1
[96] Yan D T,Chen D Z,Wang Q C,et al.,2012. Predominance of stratified anoxic Yangtze Sea interrupted by short-term oxygenation during the Ordo-Silurian transition[J]. Chemical Geology,291:69 − 78. doi: 10.1016/j.chemgeo.2011.09.015
[97] Yang S C,Hu W X,Fan J X,et al.,2022. New geochemical identification fingerprints of volcanism during the Ordovician-Silurian transition and its implications for biological and environmental evolution[J]. Earth-Science Reviews,228:104016. doi: 10.1016/j.earscirev.2022.104016
[98] Yang S C,Hu W X,Wang X L,2021. Mechanism and implications of upwelling from the Late Ordovician to early Silurian in the Yangtze region,South China[J]. Chemical Geology,565:120074. doi: 10.1016/j.chemgeo.2021.120074
[99] 杨向荣,严德天,张利伟,等,2018. 赫南特冰期古海洋环境转变及其成因机制研究现状[J]. 沉积学报,36(2):319 − 332.
Yang X R,Yan D T,Zhang L W,et al.,2018. The Genesis of Hirnantian Glaciation and Paleo-Ocean Environment During Ordovician-Silurian Transition[J]. Acta Sedimentologica Sinica,36(2):319 − 332 (in Chinese with English abstract).
[100] 张娣,刘伟,周业鑫,等,2022. 扬子区西南缘奥陶纪末—志留纪初笔石生物地层对比及意义[J]. 沉积与特提斯地质,42(3):413 − 425.
Zhang D,Liu W,Zhou Y X,et al.,2022. Biostratigraphic correlation of graptolites from Late Ordovician to Early Silurian on the southwestern margin of the Yangtze region[J]. Sedimentary Geology and Tethyan Geology,42(3):413 − 425 (in Chinese with English abstract).
[101] 张万良,李余亮,2023. 湘赣边界鹿井地区下寒武统斑点板岩地球化学特征及原岩形成环境[J]. 东华理工大学学报:自然科学版, 46(5):486 − 498.
Zhang W L,Li Y L,2023. Geochemical characteristics and protolith formation environment of the Lower Cambrian spotted slate in the Lujing Area of the Hunan Jiangxi Border[J]. Journal of East China University of Technology(Natural Science), 46(5):486 − 498 (in Chinese with English abstract).
[102] 张喜,张廷山,赵晓明,等,2021. 天文轨道周期及火山活动对中上扬子区晚奥陶世—早志留世有机碳聚集的影响[J]. 石油勘探与开发,48(4):732 − 744.
Zhang X,Zhang T S,Zhao X M,et al.,2021. Effects of astronomical orbital cycle and volcanic activity on organic carbon accumulation during Late Ordovician-Early Silurian in the Upper Yangtze area,South China[J]. Petroleum Exploration and Development,48(4):732 − 744 (in Chinese with English abstract).
[103] Zhao K,Du X,Lu Y,et al.,2021. Is volcanic ash responsible for the enrichment of organic carbon in shales? Quantitative characterization of organicrich shale at the Ordovician-Silurian transition[J]. Geological Society of America Bulletin,133(3/4):837 − 848.
[104] 钟阳阳,2019. 华南晚奥陶世米兰科维奇记录及其对太阳系行为的指示意义[D]. 北京:中国地质大学(北京):69 − 81.
Zhong Y Y,2019. Zhong Y Y,2019. Late Ordovician Milankovitch in South China and their implications for Solar System behavior[D]. Beijing:China University of Geoscience (Beijing):69 − 81 (in Chinese with English abstract).
[105] Zhou L,Algeo T J,Shen J,et al.,2015. Changes in marine productivity and redox conditions during the Late Ordovician Hirnantian glaciation[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,420(1):223 − 234.
[106] Zhou L,Wignall P B,Su J,et al.,2012. U/Mo ratios and δ98/95 Mo as local and global redox proxies during mass extinction events[J]. Chemical Geology,299(324-325):18 − 39.
[107] 朱逸青,陈更生,刘勇,等,2021. 四川盆地南部凯迪阶—埃隆阶层序地层与岩相古地理演化特征[J]. 石油勘探与开发,48(5):974 − 985.
Zhu Y Q,Chen G S,Liu Y,et al.,2021. Sequence stratigraphy and lithofacies paleogeographic evolution of Katian Stage-Aeronian Stage in southern Sichuan Basin,SW China[J]. Petroleum Exploration and Development,48(5):974 − 985 (in Chinese with English abstract).
[108] 邹才能,龚剑明,王红岩,等,2019. 笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J]. 中国石油勘探,24(1):1 − 6.
Zou C N,Gong J M,Wang H Y,et al.,2019. Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J]. China Petroleum Exploration,24(1):1 − 6 (in Chinese with English abstract).
-