Pore structure characteristics and main controlling factors of the Longmaxi shales in northeastern Chongqing
-
摘要:
为了探究渝东北地区龙马溪组变形页岩孔隙结构特征及其主控因素,本次研究采集12件渝东北地区龙马溪组页岩样品,利用场发射扫描电镜、液氮吸附和二氧化碳吸附等方法系统表征其孔隙结构特征,并与四川盆地不同构造带龙马溪组页岩孔隙结构参数进行对比。研究结果表明:渝东北地区龙马溪组页岩孔隙主要包括有机质孔、无机孔和微裂缝,与四川盆地川南地区成熟度相近的海相页岩相比,样品有机孔发育程度偏低,孔隙规模偏小。此外,无机孔、微裂缝在渝东北地区龙马溪组页岩中都较为发育。根据孔裂隙发育特征,可将无机孔划分为粒间孔、黏土矿物层间孔、粒内孔三类,将微裂缝划分为有机质相关微裂缝和无机矿物相关微裂缝。渝东北地区龙马溪组页岩TOC含量对微孔的影响作用呈阶段式变化,在TOC<5.93%时,TOC含量与微孔体积、比表面积呈现较强的正相关关系,在TOC>5.93%时,则呈现负相关关系,TOC含量与介孔参数并无相关性,而黏土矿物、脆性矿物含量与页岩孔隙发育均没有显著相关性。扫描电镜图像显示,构造挤压强度增加导致渝东北地区龙马溪组页岩中孔隙数量减少,且孔隙连通性在一定程度上被破坏,这使得页岩储层中游离态页岩气向吸附态页岩气转化,从而使气体发生强烈的吸附作用,并且主要以吸附态的形式封存起来,提高了页岩储气能力。该研究成果为复杂构造区页岩气勘探提供了理论依据。
Abstract:To investigate the pore characteristics and controlling factors of the Longmaxi shales in northeastern Chongqing, this study samples 12 shales from the Longmaxi Formation and utilizes physical experiments, including field emission scanning electron microscopy (FE-SEM), liquid nitrogen adsorption and carbon dioxide adsorption, to characterize the pore structures. The pore structure parameters are then compared with those of shales from different tectonic zones in the Sichuan Basin. The results indicate that the pores of shales in the Longmaxi Formation in northeastern Chongqing are predominantly comprised of organic matter pores, inorganic pores and micro-fractures. Compared to the marine shales with similar maturity in southern Sichuan, these samples exhibit relatively fewer and smaller organic matter pores but more developed inorganic pores and micro-fractures. Based on the pore-fracture characteristics, inorganic pores can be classified into three types: intergranular pores, interlayer pores in clay minerals, and intragranular pores. Micro-fractures are categorized as organic matter-related micro-fractures and inorganic mineral-related micro-fractures. The influence of TOC content on pore structure occurs in two stages: when TOC content is less than 5.93%, it exhibits a strong positive correlation with micropore volume and specific surface area; when TOC content is more than 5.93%, it shows a negative correlation with these factors, and no correlation with mesoporous parameters. In addition, there is no significant correlation between the inorganic mineral (clay and brittle mineral) content and pore parameters. The SEM images also show that the tectonic compression reduces pore volume and pore connectivity, leading to the conversion of free gas into adsorbed gas in shale reservoirs, thus improving the gas storage capacity of the shales. The research results provide a theoretical basis for shale gas exploration in complex structural areas.
-
Key words:
- northeastern Chongqing /
- Longmaxi Formation /
- deformed shale /
- pore structure /
- controlling factor
-
-
表 1 渝东北地区龙马溪组变形页岩有机地球化学和矿物组成特征
Table 1. Organic geochemistry and mineral composition characteristics of the Longmaxi shales in northeastern Chongqing
样品 有机地球化学参数/% 矿物组成/% 黏土矿物组成/% TOC Ro 石英 钾长石 斜长石 白云石 黄铁矿 黏土矿物 脆性矿物 伊利石 伊蒙混层 绿泥石 MY-1 2.78 2.12 72.2 0.5 1.0 / / 26.3 73.7 46 49 5 MY-2 3.08 1.98 60.9 0.9 1.5 / / 36.7 63.3 55 43 2 MY-3 2.81 2.06 57.6 0.8 1.2 / / 40.4 59.6 65 35 / MY-4 2.13 2.00 64 0.6 1.3 / / 34.1 65.9 40 59 1 XY-1 6.50 1.85 70.4 1.2 3.5 / / 24.9 75.1 44 55 1 XY-2 6.19 1.90 71.7 1.2 2.3 / / 24.8 75.2 39 60 1 XY-3 6.11 1.83 76 0.9 2.7 / / 20.4 79.6 53 46 1 XY-4 5.95 1.91 72.3 1.6 2.5 / / 23.6 76.4 12 87 1 SH-1 5.02 1.81 68.5 1.9 3.4 0.7 / 25.5 74.5 32 67 1 SH-2 5.93 1.78 62 1.2 6.6 / / 30.2 69.8 44 55 1 SH-3 5.08 1.83 67.2 1.2 3.5 2.5 / 25.6 74.4 53 44 3 SH-4 3.79 1.76 77.5 1 2.0 / / 19.5 80.5 39 57 4 表 2 渝东北地区龙马溪组变形页岩孔隙结构参数
Table 2. Pore structure characteristic parameters of the Longmaxi shales in northeastern Chongqing
样品 TOC/% 二氧化碳吸附实验 氮气吸附实验 微孔体积/(cm3/g) 微孔比表面积/(m2/g) 介孔体积/(cm3/g) 介孔比表面积/(m2/g) MY-1 2.78 0.0021 11.826 0.014 8.241 MY-2 3.08 0.0030 16.618 0.0141 9.028 MY-3 2.81 0.0028 15.716 0.027 13.981 MY-4 2.13 0.0022 12.624 0.0153 9.077 XY-1 6.50 0.0036 18.882 0.0126 6.264 XY-2 6.19 0.0035 18.009 0.0122 6.458 XY-3 6.11 0.0036 19.073 0.0128 8.357 XY-4 5.95 0.0035 18.225 0.0119 6.197 SH-1 5.02 0.0046 23.304 0.0138 9.229 SH-2 5.93 0.0057 28.807 0.016 12.554 SH-3 5.08 0.0041 21.641 0.0125 9.107 SH-4 3.79 0.0028 15.233 0.0105 9.643 -
[1] Curtis J B,2002. Fractured shale-gas systems[J]. AAPG Bulletin,86(11):1921 − 1938.
[2] Curtis M E,Sondergeld C H,Ambrose R J,et al.,2012. Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging Microstructure of Gas Shales[J]. AAPG Bulletin, 96(4):665 − 677.
[3] 蔡苏阳,肖七林,朱卫平,等,2021. 渝东南地区五峰-龙马溪组页岩储层纳米孔隙发育特征及影响因素——以重庆石柱剖面为例[J]. 科学技术与工程, 21(25):10603 − 10612.
Cai S Y,Xiao Q L,Zhu W P,et al.,2021. Nanopore structure characteristics and impacting factors of Wufeng-Longmaxi Formation shale in Southeast Chongqing: A case study of Shizhu Outcrop[J]. Science Technology and Engineering, 21(25):10603 − 10612 (in Chinese with English abstract).
[4] 曹琰,金之钧,朱如凯,等,2024. 富有机质泥页岩孔隙结构研究进展及展望[J]. 沉积与特提斯地质, 44(2):231 − 252.
Cao Y,Jin Z J,Zhu R K,et al.,2024. Progress and prospects in the research on pore structures of organic-rich mud shales[J]. Sedimentary Geology and Tethyan Geology, 44(2):231 − 252 (in Chinese with English abstract).
[5] 杜焕福,侯瑞卿,孙鑫,等,2023. 基于核磁共振的页岩孔隙结构特征研究[J]. 非常规油气, 10(5):38 − 47.
Du H F,Hou R Q,Sun X,et al.,2023. Study on pore structure characteristics of shale based on nuclear magnetic resonance[J]. Unconventional Oil & Gas, 10(5):38 − 47 (in Chinese with English abstract).
[6] Gou Q Y,Xu S,Hao F,et al.,2021. The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation[J]. Energy,219:119579. doi: 10.1016/j.energy.2020.119579
[7] 郭彤楼,2016. 中国式页岩气关键地质问题与成藏富集主控因素[J]. 石油勘探与开发, 43(3):317 − 326.
Guo T L,2016. Key geological problems of Chinese-style shale gas and the main controlling factors of accumulation and enrichment[J]. Petroleum Exploration and Development, 43(3):317 − 326 (in Chinese with English abstract).
[8] 何洪茜,肖加飞,杨海英,等,2024. 黔北地区下寒武统牛蹄塘组泥岩沉积环境及页岩气勘探潜力[J]. 沉积与特提斯地质,44(2):267−277.
He H Q,Xiao J F,Yang H Y,et al., 2024. Sedimentary environment and shale gas exploration potential of Lower Cambrian Niutitang Formation in northern Guizhou[J]. Sedimentary Geology and Tethyan Geology,44(2):267−277 (in Chinese with English abstract).
[9] 胡召齐,2011. 上扬子地区北部构造演化与热年代学研究[D]. 合肥:合肥工业大学.
Hu Z Q,2011. Tectonic evolution and thermochronology in the northern part of the Upper Yangtze region[D]. Hefei:Hefei University of Technology (in Chinese with English abstract).
[10] International union of pure and applied chemistry (IUPAC),1994. Compendium of Chemical Terminology (the "Gold Book")[M].2nd ed. Blackwell Scientific Publications.
[11] 孔祥晔,曾溅辉,罗群,等,2023. 川中地区大安寨段陆相页岩岩相对孔隙结构的控制作用[J]. 新疆石油地质, 44(4):392 − 403.
Kong X Y,Zeng J H,Luo Q,et al.,2023. Control of the relative pore structure of continental shale rocks in the Da'anzhai member of central Sichuan[J]. Xinjiang Petroleum Geology, 44(4):392 − 403 (in Chinese with English abstract).
[12] Li J X,Li Z W,Liu S G,et al.,2018. Kinematics of the Chengkou fault in the south Qinling orogen,Central China[J]. Journal of Structural Geology,114:64 − 75. doi: 10.1016/j.jsg.2018.06.008
[13] Li X S,Zhu H J,Zhang K X,et al.,2021. Pore characteristics and pore structure deformation evolution of ductile deformed shales in the Wufeng-Longmaxi Formation,southern China[J]. Marine and Petroleum Geology,127:104992. doi: 10.1016/j.marpetgeo.2021.104992
[14] Liang M L,Wang Z X,Gao L,et al.,2017. Evolution of pore structure in gas shale related to structural deformation[J]. Fuel,197:310 − 319. doi: 10.1016/j.fuel.2017.02.035
[15] Liu D H,Xiao X M,Tian H,et al.,2013. Sample maturation calculated using Raman spectroscopic parameters for solid organics: Methodology and geological applications[J]. Chinese Science Bulletin,58(11):1285 − 1298. doi: 10.1007/s11434-012-5535-y
[16] Loucks R G,Reed R M,Ruppel S C,et al.,2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J]. AAPG Bulletin,96(6):1071 − 1098. doi: 10.1306/08171111061
[17] 李恒超,刘大永,彭平安,等,2015. 构造作用对重庆及邻区龙马溪组页岩储集空间特征的影响[J]. 天然气地球科学, 26(9):1705 − 1711.
Li H C,Liu D Y,Peng P A,et al.,2015. Influence of tectonic action on spatial characteristics of shale reservoirs in Longmaxi Formation in Chongqing and adjacent areas[J]. Natural Gas Geoscience, 26(9):1705 − 1711 (in Chinese with English abstract).
[18] 梁峰,拜文华,邹才能,等,2016. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 43(3):350 − 358.
Liang F,Bai W H,Zou C N,et al.,2016. Shale gas enrichment model and exploration significance of Well Wuxi 2 in northeast Chongqing[J]. Petroleum Exploration and Development, 43(3):350 − 358 (in Chinese with English abstract).
[19] 刘若冰,魏志红,加奥启,等,2023. 川东南地区五峰−龙马溪组深层超压富有机质页岩孔隙结构分形特征及其地质意义[J]. 地球科学, 48(4):1496 − 1516.
Liu R B,Wei Z H,Jia A Q,et al.,2023. Fractal characteristics of deep overpressure organic-rich shale pore structure and its geological significance in the Wufeng-Longmaxi Formation in southeast Sichuan[J]. Earth Science, 48(4):1496 − 1516 (in Chinese with English abstract).
[20] 刘文平,张成林,高贵冬,等,2017. 四川盆地龙马溪组页岩孔隙度控制因素及演化规律[J]. 石油学报, 38(2):175 − 184.
Liu W P,Zhang C L,Gao G D,et al.,2017. Controlling factors and evolution of shale porosity of Longmaxi Formation in Sichuan Basin[J]. Acta Petrolei Sinica, 38(2):175 − 184 (in Chinese with English abstract).
[21] 陆亚秋,2021. 构造稳定区边缘页岩储层孔隙结构特征——以涪陵页岩气田JY41-5井为例[J]. 江汉石油职工大学学报, 34(5):8 − 10.
Lu Y Q,2021. Pore structure characteristics of shale reservoirs at the margin of structurally stable area:A case study of Well JY41-5 in Fuling shale gas field[J]. Journal of Jianghan Petroleum Staff University, 34(5):8 − 10 (in Chinese with English abstract).
[22] Ma Y,Ardakani O H,Zhong N N,et al.,2020. Possible pore structure deformation effects on the shale gas enrichment: An example from the Lower Cambrian shales of the Eastern Upper Yangtze Platform, South China[J]. International Journal of Coal Geology,217:103349. doi: 10.1016/j.coal.2019.103349
[23] Milliken K L,Rudnicki M,Awwiller D N,et al.,2013. Organic matter-hosted pore system,Marcellus formation (Devonian),Pennsylvania[J]. AAPG bulletin,97(2):177 − 200. doi: 10.1306/07231212048
[24] 马勇,钟宁宁,韩辉,等,2014. 糜棱化富有机质页岩孔隙结构特征及其含义[J]. 中国科学:地球科学, 44(10):2202 − 2209.
Ma Y,Zhong N N,Han H,et al.,2014. Pore structure characteristics and implications of organicized organic-rich shale[J]. Science China:Earth Sciences, 44(10):2202 − 2209 (in Chinese with English abstract).
[25] 梅启亮,郭睿良,周新平,等,2023. 鄂尔多斯盆地延长组长73亚段纹层型页岩油储层孔隙结构特征与影响因素[J]. 天然气地球科学, 34(5):851 − 867.
Mei Q L,Guo R L,Zhou X P,et al.,2023. Pore structure characteristics and impact factors of laminated shale oil reservoir in Chang 73 sub-member of Ordos Basin[J]. Natural Gas Geoscience, 34(5):851 − 867 (in Chinese with English abstract).
[26] 门玉澎,张海全,闫剑飞,等,2023. 黔东南牛蹄塘组富有机质页岩比表面积特征[J]. 非常规油气, 10(5):24 − 29.
Men Y P,Zhang H Q,Yan J F,et al.,2023. Specific surface area characteristics of organic-rich shale of Niutitang Formation in southeast Guizhou[J]. Unconventional Oil & Gas, 10(5):24 − 29 (in Chinese with English abstract).
[27] 牟传龙,周恳恳,梁薇,等,2011. 中上扬子地区早古生代烃源岩沉积环境与油气勘探[J]. 地质学报, 85(4):526 − 532.
Mou C L,Zhou K K,Liang W,et al.,2011. Early Paleozoic sedimentary environment of hydrocarbon source rocks in the Middle-Upper Yangtze region and petroleum and gas exploration[J]. Acta Geologica Sinica, 85(4):526 − 532 (in Chinese with English abstract).
[28] Nie H K,Jin Z J,Sun C X,et al.,2019. Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin,South China:Implications for the formation of organic matter pores[J]. Energy & Fuels,33(9):8076 − 8100.
[29] 彭钰洁,朱炎铭,2016. 挤压应力对川东渝南龙马溪组页岩孔隙的影响[J]. 特种油气藏,23(2):132. doi: 10.3969/j.issn.1006-6535.2016.02.032
Peng Y J,Zhu Y M,2016. Effect of compressive stress on shale porosity of Longmaxi Formation in southern Chongqing,eastern Sichuan[J]. Special Oil & Gas Reservoirs,23(2):132 (in Chinese with English abstract). doi: 10.3969/j.issn.1006-6535.2016.02.032
[30] Schoenherr J,Littke R,Urai J L,et al.,2007. Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen[J]. Organic Geochemistry,38(8):1293 − 1318. doi: 10.1016/j.orggeochem.2007.03.010
[31] Shi S,Wang Y,Guo H,et al.,2021. Variations in pore structure of marine shale from the same horizon of the Longmaxi Formation with changing position in a small-scale anticline:Implications for the influence of structural deformation[J]. Marine and Petroleum Geology,124:104837. doi: 10.1016/j.marpetgeo.2020.104837
[32] Sun W,Zuo Y,Wang S,et al.,2020. Pore structures of shale cores in different tectonic locations in the complex tectonic region:A case study of the Niutitang Formation in Northern Guizhou,Southwest China[J]. Journal of Natural Gas Science and Engineering,80:103398. doi: 10.1016/j.jngse.2020.103398
[33] 尚福华,苗科,朱炎铭,等,2023. 复杂构造区页岩孔隙结构、吸附特征及其影响因素[J]. 煤炭科学技术, 51(2):269 − 282.
Shang F H,Miao K,Zhu Y M,et al.,2023. Shale pore structure,adsorption characteristics and influencing factors in complex structural area[J]. Coal Science and Technology, 51(2):269 − 282 (in Chinese with English abstract).
[34] 石砥石,徐秋晨,郭睿良,等,2022. 下扬子地区望江坳陷二叠系富有机质页岩孔隙结构特征与影响因素[J]. 天然气地球科学, 33(12):1911 − 1925.
Shi D S,Xu Q C,Guo R L,et al.,2022. Pore structure characteristics and influencing factors of Permian organic-rich shale in Wangjiang depression in Lower Yangtze area[J]. Natural Gas Geoscience, 33(12):1911 − 1925 (in Chinese with English abstract).
[35] 韦国栋,谭秀成,刘睿,等,2024. 长宁地区龙马溪组页岩沉积古地貌与页岩气差异富集的耦合机制[J]. 沉积与特提斯地质,44(2):253−266.
Wei G D,Tan X C,Liu R,et al., 2024. The coupling mechanism between geomorphology of shale sedimentary and differential enrichment of shale gas in Longmaxi Formation in Changning area[J]. Sedimentary Geology and Tethyan Geology,44(2):253−266 (in Chinese with English abstract).
[36] 万洪程,孙玮,刘树根,等,2012. 四川盆地及周缘地区五峰—龙马溪组页岩气概况及前景评价[J]. 成都理工大学学报:自然科学版, 39(2):176 − 181.
Wan H C,Sun W,Liu S G,et al.,2012. Overview and prospect evaluation of shale gas in Wufeng-Longmaxi Formation in Sichuan Basin and its periphery[J]. Journal of Chengdu University of Technology (Natural Science Edition), 39(2):176 − 181 (in Chinese with English abstract).
[37] 汪洋,2020. 川南地区五峰−龙马溪组页岩成岩成烃演化及对页岩气赋存状态的影响[D]. 中国石油大学(北京).
Wang Y,2020. Hydrocarbon formation evolution of shale diagenesis in the Wufeng-Longmaxi Formation in southern Sichuan and its influence on shale gas occurrence state[D]. China University of Petroleum(Beijing) (in Chinese with English abstract).
[38] 王阳,2017. 上扬子区龙马溪组页岩微孔缝结构演化与页岩气赋存[D]. 中国矿业大学.
Wang Y,2017. Evolution of shale microporous fracture structure and occurrence of shale gas in Longmaxi Formation in Upper Yangtze area[D]. China University of Mining and Technology (in Chinese with English abstract).
[39] Xu S,Gou Q Y,Hao F,et al.,2020. Shale pore structure characteristics of the high and low productivity wells,Jiaoshiba shale gas field,Sichuan Basin,China:Dominated by lithofacies or preservation condition?[J]. Marine and Petroleum Geology,114:104211. doi: 10.1016/j.marpetgeo.2019.104211
[40] 谢国梁,刘树根,焦堃,等,2021. 受显微组分控制的深层页岩有机质孔隙:四川盆地五峰组−龙马溪组有机质组分分类及其孔隙结构特征[J]. 天然气工业, 41(9):23 − 34.
Xie G L,Liu S G,Jiao K,et al.,2021. Organic matter porosity in deep shale controlled by microscopic components:Classification of organic matter components and pore structure characteristics of Wufeng Formation-Longmaxi Formation in Sichuan Basin[J]. Natural Gas Industry, 41(9):23 − 34 (in Chinese with English abstract).
[41] 邢翔,王文希,2020. 四川盆地东南缘富页岩气构造类型及保存主控因素[J]. 东北石油大学学报, 44(2):1 − 10+133.
Xing X,Wang W X,2020. Shale-rich gas structure types and main controlling factors of preservation in the southeastern margin of Sichuan Basin[J]. Journal of Northeast Petroleum University, 44(2):1 − 10+133 (in Chinese with English abstract).
[42] 熊小辉,王剑,熊国庆,等,2018. 渝东北地区五峰组−龙马溪组页岩气地质特征及其勘探方向探讨[J]. 地质学报, 92(9):1948 − 1958.
Xiong X H,Wang J,Xiong G Q,et al.,2018. Geological characteristics and exploration direction of shale gas of Wufeng Formation-Longmaxi Formation in northeast Chongqing[J]. Acta Geologica Sinica, 92(9):1948 − 1958 (in Chinese with English abstract).
[43] Zhao J H,Jin Z J,Hu Q H,et al.,2018. Mineral composition and seal condition implicated in pore structure development of organic-rich Longmaxi shales,Sichuan Basin,China[J]. Marine and Petroleum Geology,98:507 − 522. doi: 10.1016/j.marpetgeo.2018.09.009
[44] Zhu H J,Ju Y W,Qi Y,et al.,2018. Impact of tectonism on pore type and pore structure evolution in organic-rich shale:Implications for gas storage and migration pathways in naturally deformed rocks[J]. Fuel,228:272 − 289. doi: 10.1016/j.fuel.2018.04.137
[45] 张闯辉,朱炎铭,陈居凯,等,2017. 页岩孔隙综合分形特征及其影响因素分析[J]. 河南理工大学学报:自然科学版, 36(4):42 − 47.
Zhang C H,Zhu Y M,Chen J K,et al.,2017. Analysis of comprehensive fractal characteristics of shale pores and their influencing factors[J]. Journal of Henan Polytechnic University (Natural Science Edition), 36(4):42 − 47 (in Chinese with English abstract).
[46] 张洪瑞,侯增谦,2023. 大陆碰撞成矿作用:深部动力学机制与成矿[J]. 东华理工大学学报:自然科学版, 46(6):525 − 536.
Zhang H R,Hou Z Q,2023. Metallogenesis within collisional orogen: the deep dynamics and formation of mineral deposits[J]. Journal of East China University of Technology (Natural Science Edition), 46(6):525 − 536 (in Chinese with English abstract).
[47] 张盼盼,刘小平,王雅杰,等,2014. 页岩纳米孔隙研究新进展[J]. 地球科学进展, 29(11):1242 − 1249.
Zhang P P,Liu X P,Wang Y J,et al.,2014. New progress in the study of shale nanopores[J]. Advances in Earth Science, 29(11):1242 − 1249 (in Chinese with English abstract).
[48] 赵迪斐,郭英海,朱炎铭,等,2022. 深层海相页岩储层精准评价与开发选层的评价体系问题评述[J]. 非常规油气, 9(2):1 − 7.
Zhao D F,Guo Y H,Zhu Y M,et al.,2022. A review on the evaluation system of accurate evaluation and development and selection of deep marine shale reservoirs[J]. Unconventional Oil & Gas, 9(2):1 − 7 (in Chinese with English abstract).
[49] 赵建华,金之钧,2021. 泥岩成岩作用研究进展与展望[J]. 沉积学报,39(1):58−72.
Zhao J H,Jin Z J,2021. Research progress and prospect of mudstone diagenesis[J]. Journal of Sedimentology,39(1):58−72 (in Chinese with English abstract).
[50] 朱炎铭,王阳,陈尚斌,等,2016. 页岩储层孔隙结构多尺度定性−定量综合表征:以上扬子海相龙马溪组为例[J]. 地学前缘, 23(1):154 − 163.
Zhu Y M,Wang Y,Chen S B,et al.,2016. Multi-scale qualitative and quantitative comprehensive characterization of shale reservoir pore structure:A case study of the Longmaxi Formation of the upper Yangtze marine facies[J]. Earth Science Frontiers, 23(1):154 − 163 (in Chinese with English abstract).
[51] 朱志军,2010. 黔北—川东南志留系层序格架下的沉积体系演化特征及有利区带预测[J]. 沉积学报, 28(2):243 − 253.
Zhu Z J,2010. Evolution characteristics of sedimentary system under the sequence lattice of the Silurian sequence lattice in northern Guizhou and southeastern Sichuan and prediction of favorable zones[J]. Journal of Sedimentology, 28(2):243 − 253 (in Chinese with English abstract).
[52] 邹宇轩,陈书平,2023. 东濮凹陷濮城构造形成演化及油气前景[J]. 东华理工大学学报:自然科学版, 46(1):21 − 29.
Zou Y X,Chen S P,2023. Evolution and hydrocarbon prospects of Pucheng structure in Dongpu sag[J]. Journal of East China University of Technology (Natural Science Edition), 46(1):21 − 29 (in Chinese with English abstract).
-