Genesis and major controlling factors for the enrichment of hydrogen sulfide accumulation in the condensate gas reservoir of the Shunbei No. 4 fault zone, Tarim Basin
-
摘要:
研究塔里木盆地顺北油田4号断裂带凝析气藏中H2S成因机制与富集过程。通过色谱法测定顺北4号断裂带多个井点的不同深度奥陶系气藏天然气样品的H2S、CO2含量,结合气藏干燥系数等指标,研究H2S的地质成因,探讨其富集主控因素。结果表明:(1)奥陶系碳酸盐岩缝洞型凝析气藏普遍含H2S,含量在0.3%~1.6%之间,达到单独估算H2S气体储量的标准,具有较好的综合利用价值,且H2S含量与CO2含量具有正相关性,从南向北,含量逐渐减小,整体上为微—低含H2S气藏;(2)顺北4号断裂带碳酸盐岩缝洞型凝析气藏的H2S、CO2为热化学硫酸盐还原反应(thermochemical sulfate reduction, TSR)产物,深部中寒武统广泛分布的膏盐岩为H2S生成提供了物质基础,寒武系盐下形成的油气藏为TSR作用提供烃类,其长期深埋增温为TSR形成提供有利条件;(3)走滑断裂为深部H2S向奥陶系油气藏的运移聚集提供通道,上奥陶统巨厚泥岩为含H2S气藏的富集提供了良好的保存条件。即寒武系膏盐岩、走滑断裂沟通、上奥陶统严密封盖、晚期深埋高温等地质因素,共同造就了顺北东部奥陶系凝析气藏H2S的富集,预示着顺北地区深层寒武系存在高含H2S气藏。
-
关键词:
- H2S成因 /
- 热化学硫酸盐还原反应(TSR) /
- 走滑断裂 /
- 顺北油气田 /
- 塔里木盆地
Abstract:This study investigates the origin and enrichment process of hydrogen sulfide in the condensate gas reservoirs of the Shunbei No. 4 fault zone in the Tarim Basin. Gas samples from Ordovician gas reservoirs at different depths in Well Shunbei No. 4 were analyzed by chromatographic method to determine hydrogen sulfide and carbon dioxide concentrations. The geological origins of hydrogen sulfide were studied, and its controlling factors of enrichment were discussed. The results show that: (1) The fractured-cavity type condensate gas reservoirs from the Ordovician carbonates generally contain hydrogen sulfide, with concentrations ranging from 0.3% to 1.6%, which meets the standard of estimating hydrogen sulfide gas reserves and has good comprehensive utilization value. Moreover, the hydrogen sulfide concentrations positively correlate with the carbon dioxide concentrations, decreasing from south to north, indicating a low-sulfur hydrogen gas reservoir. (2) Hydrogen sulfide and carbon dioxide of the carbonate fracture-type in condensate gas reservoirs of the Shunbei No. 4 fault zone are products of thermochemical sulfate reduction (TSR). The deep, widely distributed Middle Cambrian salt rock provides the material basis for hydrogen sulfide generation, while hydrocarbon reservoirs formed in Cambrian subsalt strata provide hydrocarbons for the TSR process. The long-term increase in temperature due to the deep burial of Cambrian subsalt oil and gas reservoirs has created favorable conditions for the TSR process. (3) Strike-slip faults function as migration pathways for deep hydrogen sulfide into the Ordovician reservoirs. The thick Upper Ordovician mudstone provides excellent preservation conditions for the enrichment of hydrogen sulfide gas reservoirs. Consequently, geological factors such as Cambrian salt-rock, strik-slip fault connections, Upper Ordovician tight sealing and late-stage deep burial with high temperature have contributed to the enrichment of hydrogen sulfide in the Ordovician condensate gas reservoirs in eastern Shunbei, indicating the potential existence of high hydrogen sulfide gas reservoirs in deep Cambrian reservoirs of the Shunbei area.
-
-
图 2 顺北4号断裂带沿断裂方向过井气藏剖面图(剖面位置见图1B中4号断裂带)
Figure 2.
图 7 塔里木盆地顺北地区东南部断裂带含H2S油气藏形成演化示意图(剖面位置见图1)
Figure 7.
-
[1] 蔡勋育,刘金连,赵培荣,等,2020. 中国石化油气勘探进展与上游业务发展战略[J]. 中国石油勘探,25(1):11 − 19.
Cai X Y,Liu J L,Zhao P R,et al.,2020. Exploration progress and upstream development strategy of Sinopec[J]. China Petroleum Exploration,25(1):11 − 19 (in Chinese with English abstract).
[2] 曹自成,路清华,顾忆,等,2020. 塔里木盆地顺北油气田1号和5号断裂带奥陶系油气藏特征[J]. 石油与天然气地质,41(5):975 − 984.
Cao Z C,Lu Q H,Gu Y,et al.,2020. Characteristics of Ordovician reservoirs in Shunbei 1 and 5 fault zones,Tarim Basin[J]. Oil & Gas Geology,41(5):975 − 984 (in Chinese with English abstract).
[3] 陈安定,李剑锋,代金友,2009. 论硫化氢生成的地质条件[J]. 海相油气地质,14(4):24 − 34.
Chen A D,Li J F,Dai J Y,2009. Geological conditions of generating hydrogen sulphide[J]. Marine Origin Petroleum Geology,14(4):24 − 34 (in Chinese with English abstract).
[4] 陈红汉,2007. 油气成藏年代学研究进展[J]. 石油与天然气地质,28(2):143 − 150.
Chen H H,2007. Advances in geochronoiogy of hydrocarbon accumulation[J]. Oil & Gas Geology,28(2):143 − 150 (in Chinese with English abstract).
[5] 程汉列,王连山,高创波,等,2018. 塔中奥陶系储层硫化氢成因及主控因素[J]. 地质找矿论丛,33(4):604 − 610.
Cheng H L,Wang L S,Gao C B,et al.,2018. Origin of hydrogen sulfide and the main control factor of its distribution in Ordovician carbonate reservoirs of Tazhong area[J]. Contributions to Geology and Mineral Resources Research,33(4):604 − 610 (in Chinese with English abstract).
[6] 戴金星,1985. 中国含硫化氢的天然气分布特征、分类及其成因探讨[J]. 沉积学报,3(4):109 − 120.
Dai J X,1985. Distribution,classification and origin of natural gas with hydrogen sulfide in China[J]. Acta Sedimentologica Sinica,3(4):109 − 120 (in Chinese with English abstract).
[7] 邓尚,李慧莉,张仲培,等,2018. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质,39(5):878 − 888.
Deng S,Li H L,Zhang Z P,et al.,2018. Characteristics of differential actives in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei area and its surroundings,Tarim Basin[J]. Oil & Gas Geology,39(5):878 − 888 (in Chinese with English abstract).
[8] Deng S,Li H L,Zhang Z P,et al.,2019. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin[J]. AAPG Bulletin,103(1):109 − 137. doi: 10.1306/06071817354
[9] 樊建明,郭平,孙良田,等,2006. 天然气储层中硫化氢分布规律、成因及对生产的影响[J]. 特种油气藏,13(2):90 − 94.
Fan J M,Guo P,Sun L T,et al.,2006. Hydrogen sulfide distribution,genesis and impact on production in gas reservoir[J]. Special Oil and Gas Reservoirs,13(2):90 − 94 (in Chinese with English abstract).
[10] 谷茸,云露,朱秀香,等,2020. 塔里木盆地顺北油田油气来源研究[J]. 石油实验地质,42(2):248 − 254.
Gu R,Yun L,Zhu X X,et al.,2020. Oil and gas sources in Shunbei Oilfield,Tarim Basin[J]. Petroleum Geology & Experiment,42(2):248 − 254 (in Chinese with English abstract).
[11] 顾忆,万旸璐,黄继文,等,2019. “大埋深、高压力”条件下塔里木盆地超深层油气勘探前景[J]. 石油实验地质,41(2):157 − 164.
Gu Y,Wan Y L,Huang J W,et al.,2019. Prospects for ultra-deep oil and gas in the "deep burial and high pressure" Tarim Basin[J]. Petroleum Geology & Experiment,41(2):157 − 164 (in Chinese with English abstract).
[12] 关晓东,郭磊,2003. 深层−超深层油气成藏研究新进展及展望[J]. 石油实验地质,45(2):203 − 209.
Guan X D,Guo L,2003. New progress and prospect of oil and gas accumulation research in deep to ultra-deep strata[J]. Petroleum Geology & Experiment,45(2):203 − 209 (in Chinese with English abstract).
[13] 郭鸣,刘兴华,陈光智,2016. 塔里木油田含硫试采油井的原油密闭转运技术的应用[J]. 钻采工艺,39(5):62 − 64,104.
Guo M,Liu X H,Chen G Z,2016. Crude oil closed transport unit test wells in Tarim oilfield[J]. Drilling & Production Technology,39(5):62 − 64 (in Chinese with English abstract).
[14] 韩俊,况安鹏,能源,等,2021. 顺北5号走滑断裂带纵向分层结构及其油气地质意义[J]. 新疆石油地质,42(2):152 − 160.
Han J,Kuang A P,Neng Y,et al.,2021. Vertical layered structure of Shunbei No. 5 Strike-Slip Fault Zone and its significance on hydrocarbon accumulation[J]. Xinjiang Petroleum Geology,42(2):152 − 160 (in Chinese with English abstract).
[15] 何大祥,李博偲,胡锦杰,等,2022. 哈拉哈塘凹陷含硫化氢天然气地球化学特征[J]. 中国石油大学学报:自然科学版,46(1):44 − 52.
He D X,Li B C,Hu J J,et al.,2022. Geochemical characteristics of H2S-bearing natural gas from Halahatang sag[J]. Journal of China University of Petroleum (Edition of Natural Science),46(1):44 − 52 (in Chinese with English abstract).
[16] 何治亮,张军涛,丁茜,等,2017. 深层−超深层优质碳酸盐岩储层形成控制因素[J]. 石油与天然气地质,38(4):633 − 644,763.
He Z L,Zhang J T,Ding Q,et al.,2017. Factors controlling the formation of high-quality deep to ultra-deep carbonate reservoirs[J]. Oil & Gas Geology,38(4):633 − 644,763 (in Chinese with English abstract).
[17] 侯路,胡军,汤军,2005. 中国碳酸盐岩大气田硫化氢分布特征及成因[J]. 石油学报,26(3):26 − 32.
Hou L,Hu J,Tang J,2005. Distribution and genesis of hydrogen sulfide in giant carbonate gas fields of China[J]. Acta Petrolei Sinica,26(3):26 − 32 (in Chinese with English abstract).
[18] 黄诚,2019. 叠合盆地内部小尺度走滑断裂幕式活动特征及期次判别:以塔里木盆地顺北地区为例[J]. 石油实验地质,41(3):601 − 612.
Huang C,2019. Multi-stage activity characteristics of small-scale strike-slip faults in superimposed basin and its identification method:A case study of Shunbei area,Tarim Basin[J]. Petroleum Geology & Experiment,41(3):601 − 612 (in Chinese with English abstract).
[19] 姜福杰,杨海军,沈卫兵,等,2015. 中地区奥陶系碳酸盐岩油气输导格架及其控藏模式[J]. 石油学报,36(S2):51 − 59.
Jiang F J,Yang H J,Shen W B,et al.,2015. Ordovician carbonate hydrocarbon transport system in Tazhong area of Tarim basin and its reservoir-controlling mode[J]. Acta Petrolei Sinica,36(S2):51 − 59 (in Chinese with English abstract).
[20] 江兴福,徐人芬,黄建章,2002. 川东地区飞仙关组气藏硫化氢分布特征[J]. 天然气工业,22(2):24 − 27.
Jiang X F,Xu R F,Haung J Z,2002. Characteristics of hydrogen sulfide distribution in Feixianguan formation gas reservoirs in east Sichuan[J]. Natural Gas Industry,22(2):24 − 27 (in Chinese with English abstract).
[21] 焦方正,2018. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质,39(2):207 − 216.
Jiao F Z,2018. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area,Tarim Basin[J]. Oil & Gas Geology,39(2):207 − 216 (in Chinese with English abstract).
[22] 李阳,薛兆杰,程喆,等,2020. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探,25(1):45 − 57.
Li Y,Xue Z J,Cheng Z,et al.,2020. Progress and development directions of deep oil and gas exploration and development in China[J]. China Petroleum Exploration,25(1):45 − 57 (in Chinese with English abstract).
[23] 李映涛,漆立新,张哨楠,等,2019. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,40(12):1470 − 1484.
Li Y T,Qi L X,Zhang S N,et al.,2019. Characteristics and development mode of the Middle and Lower Ordovician fault-karst reservoir in Shunbei area,Tarim Basin[J]. Acta Petrolei Sinica,40(12):1470 − 1484 (in Chinese with English abstract).
[24] 刘宝增,2020. 塔里木盆地顺北地区油气差异聚集主控因素分析——以顺北1号、顺北5号走滑断裂带为例[J]. 中国石油勘探,25(3):83 − 95.
Liu B Z,2020. Analysis of main controlling factors of oil and gas differential accumulation in Shunbei area,Tarim Basin - taking Shunbei No. 1 and No. 5 strike slip fault zones as examples[J]. China Petroleum Exploration,25(3):83 − 95 (in Chinese with English abstract).
[25] 毛毳,钟建华,王有智,等,2018. 塔里木盆地巴楚隆起奥陶系岩溶缝洞化学充填物成因分析[J]. 中国石油大学学报:自然科学版,42(6):50 − 58.
Mao C,Zhong J H,Wang Y Z,et al.,2018. Origin of chemical fillings in Ordovician fracture cave of Bachu Uplift in Tarim Basin[J]. Journal of China University of Petroleum (Edition of Natural Science),42(6):50 − 58 (in Chinese with English abstract).
[26] 倪新锋,黄理力,陈永权,等,2017. 塔中地区深层寒武系盐下白云岩储层特征及主控因素[J]. 石油与天然气地质,38(3):489 − 498.
Ni X F,Huang L L,Chen Y Q,et al.,2017. Characteristics and main controlling factors of the Cambrian pre-salt dolomite reservoirs in Tazhong Block,Tarim Basin[J]. Oil & Gas Geology,38(3):489 − 498 (in Chinese with English abstract).
[27] Pang X Q,Jia C Z,Zhang K,et al.,2020. The dead line for oil and gas and implication for fossil resource prediction[J]. Earth System Science Data,12(1):577 − 590. doi: 10.5194/essd-12-577-2020
[28] Pang X Q,Wang W Y,Wang Y X,et al.,2015. Comparison of otherness on hydrocarbon accumulation conditions and characteristics between deep and middle-shallow in petroliferous basins[J]. Acta Petrolei Sinica,36(10):1167 − 1187.
[29] 秦胜飞,贾承造,李梅,2002. 和田河气田天然气东西部差异及成因[J]. 石油勘探与开发,29(5):16 − 18.
Qin S F,Jia C Z,Li M,2002. The difference in geochemical characteristics of natural gases between eastern and western parts in Hotan River gas field of Tarim Basin and its origin[J]. Petroleum Exploration and Development,29(5):16 − 18 (in Chinese with English abstract).
[30] 孙杰,张世奇,魏垂高,等,2006. 罗家油田硫化氢成因及运聚规律研究[J]. 西部探矿工程,18(7):81 − 84.
Sun J,Zhang S Q,Wei C G,et al.,2006. Study on the law of transport and gathering of hydrogen sulfide in Luojia Oilfield[J]. West-China Exploration Engineering,18(7):81 − 84 (in Chinese with English abstract).
[31] 汤良杰,金之钧,庞雄奇,2000. 多期叠合盆地油气运聚模式[J]. 石油大学学报,26(3):263 − 270.
Tang L J,Jin Z J,Pang X Q,2000. Hydrocarbon migration and accumulation models of superimposed basins[J]. Journal of China University of Petroleum (Edition of Natural Science),26(3):263 − 270 (in Chinese with English abstract).
[32] 王昱翔,顾忆,傅强,等,2019. 顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因[J]. 吉林大学学报:地球科学版,49(4):932 − 946.
Wang Y X,Gu Y,Fu Q,et al.,2019. Characteristics and genesis of deep carbonate reservoirs in Shunbei area[J]. Journal of Jilin University (Earth Science Edition),49(4):932 − 946 (in Chinese with English abstract).
[33] 王招明,谢会文,陈永权,等,2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义[J]. 中国石油勘探,19(2):1 − 13.
Wang Z M,Xie H W,Chen Y Q,et al.,2014. Discovery and exploration of Cambrian subsalt dolomite original hydrocarbon reservoir at Zhongshen-1 Well in Tarim Basin[J]. China Petroleum Exploration,19(2):1 − 13 (in Chinese with English abstract).
[34] 徐蝶,古家青,贺维胜,等,2019. 塔中奥陶系硫化氢成因及寒武系油气探勘潜力[J]. 新疆地质,37(4):525 − 531.
Xu D,Gu J Q,He W S,et al.,2019. Origin of hydrogen sulfide in Ordovician in Tazhong area and exploration potential of Cambrian oil and gas[J]. Xinjiang Geology,37(4):525 − 531 (in Chinese with English abstract).
[35] 云露,2021. 顺北东部北东向走滑断裂体系控储控藏作用与突破意义[J]. 中国石油勘探,26(3):41 − 52.
Yun L,2021. Controlling effect of NE strike-slip fault system on reservoir development and hydrocarbon accumulation in the eastern Shunbei area and its geological significance,Tarim Basin[J]. China Petroleum Exploration,26(3):41 − 52 (in Chinese with English abstract).
[36] 张水昌,高志勇,李建军,等,2012. 塔里木盆地寒武系−奥陶系海相烃源岩识别与分布预测[J]. 石油勘探与开发,39(3):285 − 294. doi: 10.1016/S1876-3804(12)60044-5
Zhang S C,Gao Z Y,Li J J,et al.,2012. Identification and distribution of marine hydrocarbon source rocks in the Ordovician and Cambrian of the Tarim Basin[J]. Petroleum Exploration and Development,2012,39(3):285 − 294 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60044-5
[37] 张水昌,朱光有,陈建平,等,2007. 四川盆地川东北部飞仙关组高含硫化氢大型气田群气源探讨[J]. 科学通报,52(S1):86 − 94.
Zhang S C,Zhu G Y,Chen J P,et al.,2007. Discussion on gas sources of large gas fields with high hydrogen sulfide content in Feixianguan Formation,Northeastern Sichuan Basin[J]. Chinese Science Bulletin,52(Sup 1):86 − 94 (in Chinese with English abstract).
[38] 赵孟军,2002. 塔里木盆地和田河气田天然气的特殊来源及非烃组分的成因[J]. 地质论评,48(5):480 − 486.
Zhao M J,2002. Special sources of the natural gases of the Hotan River gas field and the origin of its non-hydrocarbon gases[J]. Geological Review,48(5):480 − 486 (in Chinese with English abstract).
[39] 赵兴齐,陈践发,张晨,等,2011. 天然气藏中硫化氢成因研究进展[J]. 新疆石油地质,32(5):552 − 556.
Zhao X Q,Chen J F,Zhang C,et al.,2011. The research progress of hydrogen sulfide genesis in gas reservoir[J]. Xingjiang Petroleum Geology,32(5):552 − 556 (in Chinese with English abstract).
[40] 朱光有,戴金星,张水昌,等,2004. 中国含硫化氢天然气的研究及勘探前景[J]. 天然气工业,24(9):1 − 5.
Zhu G Y,Dai J X,Zhang S C,et al.,2004. Research on sour gas in China and its exploration prospects[J]. Natural Gas Industry,24(9):1 − 5 (in Chinese with English abstract).
[41] 朱光有,费安国,赵杰,等,2014. TSR成因H2S的硫同位素分馏特征与机制[J]. 岩石学报,30(1):3772 − 3786.
Zhu G Y,Fei A G,Zhao J,et al.,2014. Sulfur isotopic fractionation and mechanism for Thermochemical Sulfate Reduction genetic H2S[J]. Acta Petrologica Sinica,30(1):3772 − 3786 (in Chinese with English abstract).
[42] 朱光有,杨海军,苏劲,等,2012. 塔里木盆地海相石油的真实勘探潜力[J]. 岩石学报,28(4):1333 − 1347.
Zhu G Y,Yang H J,Su J S,et al.,2012. True exploration potential of marine oils in the Tarim Basin[J]. Acta Petrologica Sinica,28(4):1333 − 1347 (in Chinese with English abstract).
-