华南早寒武世火山活动与黑色页岩多金属层的关系初探

杨镇. 2025. 华南早寒武世火山活动与黑色页岩多金属层的关系初探. 沉积与特提斯地质, 45(2): 317-328. doi: 10.19826/j.cnki.1009-3850.2024.10003
引用本文: 杨镇. 2025. 华南早寒武世火山活动与黑色页岩多金属层的关系初探. 沉积与特提斯地质, 45(2): 317-328. doi: 10.19826/j.cnki.1009-3850.2024.10003
YANG Zhen. 2025. Preliminary study on the relationship between Early Cambrian volcanism and polymetallic layers in black shales of South China. Sedimentary Geology and Tethyan Geology, 45(2): 317-328. doi: 10.19826/j.cnki.1009-3850.2024.10003
Citation: YANG Zhen. 2025. Preliminary study on the relationship between Early Cambrian volcanism and polymetallic layers in black shales of South China. Sedimentary Geology and Tethyan Geology, 45(2): 317-328. doi: 10.19826/j.cnki.1009-3850.2024.10003

华南早寒武世火山活动与黑色页岩多金属层的关系初探

  • 基金项目: 贵州省基础研究计划项目(黔科合基础-ZK[2022]一般213);贵州省教育厅青年项目(黔教基[2022]157)
详细信息
    作者简介: 杨镇(1989—),男,副教授,博士,主要从事斑岩矿床及早寒武世沉积矿床学研究。Email:cugbyzh@163.com
  • 中图分类号: P618.13

Preliminary study on the relationship between Early Cambrian volcanism and polymetallic layers in black shales of South China

  • 寒武纪早期全球性的深水海洋缺氧背景下,华南地区黑色页岩广泛发育,层序稳定。其底部Ni、Mo、V、铂族元素(PGEs)、稀土元素(REEs)等多金属元素发生不同程度地富集。多金属来源至今存在海水、热液以及二者的混合之观点,成矿富集机制仍有多种见解。与此同时,区内火山凝灰岩(钾质斑脱岩)广泛出露。火山活动与多金属层富集的关系需要梳理,本文基于区内已有研究成果,开展区域沉积建造及成岩年代学的梳理、岩石地球化学的收集分析。研究表明:(1)埃迪卡拉纪至早寒武世,火山凝灰岩多期次发育且广泛,火山岩是地层岩性的分界;(2)火山岩与多金属层具有明显的时空及地球化学关联性;(3)地层沉积构造、矿物组成,以及S、Fe、Hg、Mo同位素等地球化学信息均指示有火山活动参与多金属的富集。

  • 加载中
  • 图 1  华南地块埃迪卡拉纪晚期至寒武纪早期古地理简图(据Jiang et al.,2009Pi et al.,2013Jin et al.,2016Chang et al.,2018修改)

    Figure 1. 

    图 2  华南地区早寒武世典型剖面图及凝灰岩锆石U-Pb年龄统计直方图(梅树村、松林剖面数据分别据Compston et al.,2008Zhou et al.,2008;坝黄、盘门据Chen et al.,2015;柑子坪据Chen et al.,2009

    Figure 2. 

    图 3  湘黔地区(大竹流水、马路河、三岔、慈利)黑色页岩、多金属层稀土元素配分曲线对比图(数据引自吴朝东等,2001Xu et al.,2013Pi et al.,2013Han et al.,2015;北美页岩数据来自Haskin et al.,1968

    Figure 3. 

    图 4  湘黔地区(大竹流水、马路河、水东、三岔)铂族元素配分曲线对比图(数据引自Mao et al.,2002Lehmann et al.,2007Xu et al.,2013Pi et al.,2013Han et al.,2015;C1球粒陨石数据来自Anders and Grevesse,1989

    Figure 4. 

    表 1  贵州下寒武统黑色岩系含钼多金属矿岩层对比表

    Table 1.  Correlation table of molybdenum-bearing polymetallic ore strata of Lower Cambrian black rock series in Guizhou

    矿床纳雍县水东
    Ni-Mo矿
    松林Ni-Mo
    多金属矿
    播州区冉村沟Mo
    多金属矿
    铜仁坝黄Mo矿三穗海山V矿
    上覆地层明心寺组明心寺组明心寺组九门冲组九门冲组
    含矿地层牛蹄塘组牛蹄塘组牛蹄塘组九门冲组一段留茶坡组
    含矿岩组
    特征
    深灰色至黑色粉
    砂质泥岩、碳质泥岩、含硅质磷块
    岩、泥质灰岩。厚约0.5~12 m。
    薄至中厚层状碳质页岩,见较多高碳质页岩,底部含矿结核黏土岩、Ni-
    Mo、V矿层。厚约1~4.5 m。
    黑色含碳质泥岩或碳质泥岩为主,局部夹纹层状灰岩,底部薄层或透镜状硅质磷块岩。厚21~40 m。以黑色碳质页岩为主,底部为层状、透镜状磷块岩,
    中部为黑色碳质页岩、条纹状硅质
    岩,上部为泥质
    灰岩。
    顶部黑色薄层硅
    质岩夹黑色碳质页岩,底部黑色、灰黑色薄至中厚层硅质岩。厚约15~80 m。
    下伏地层灯影组灯影组灯影组留茶坡组陡山沱组
    矿物组成黄铁矿、红砷镍
    矿、紫硫镍铁矿、硫钼矿及少量针
    镍矿等。
    黄铁矿、针镍矿、锑硫镍矿、碳硫
    钼矿、重晶石、石英、石膏等。
    黄铁矿、胶硫钼
    矿、红砷镍矿、
    针镍矿、紫硫镍铁矿等。
    黄铁矿、二硫镍
    矿、辉砷镍矿、闪锌矿、黄铜矿等。
    未见独立的V矿石,矿石主要由碳质页岩、硅质岩组成。
    下载: 导出CSV
  • [1]

    Anders E,Grevesse N,1989. Abundances of the elements:Meteoritic and solar[J]. Geochimica et Cosmochimica Acta,53(1):179 − 214.

    [2]

    Brengman L A,Fedo C M,2018. Development of a mixed seawater–hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (similar to 2.7 Ga) Abitibi Greenstone Belt,Canada[J]. Geochimica et Cosmochimica Acta,227:227 − 245.

    [3]

    Chang H J,Chu X L,Feng L J,et al.,2018. Marine redox stratification on the earliest Cambrian (ca. 542–529 Ma) Yangtze Platform[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,504:75 − 85.

    [4]

    陈多福,潘晶铭,徐文新,等,1998. 华南震旦纪基性火山岩的地球化学及构造环境[J]. 岩石学报,14(3):343 − 350.

    Chen D F,Pan J M,Xu W X,et al.,1998. Geochemistry of Sinian basalts from South China and its tectonic setting[J]. Acta Petrologica Sinica,14(3):343 − 350 (in Chinese with English abstract).

    [5]

    Chen D Z,Wang J G,Qing H R,et al.,2009. Hydrothermal venting activities in the early Cambrian,South China:petrological,geochronological and stable isotopic constraints[J]. Chemical Geology,258(3 − 4):168 − 181.

    [6]

    Chen D Z,Zhou X Q,Fu Y,et al.,2015. New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China[J]. Terra Nova,27(1):62 − 68.

    [7]

    Cheng M,Li C,Zhou L,et al.,2016. Marine Mo biogeochemistry in the context of dynamically euxinic mid–depth waters:A case study of the lower Cambrian Niutitang shales,South China[J]. Geochimica et Cosmochimica Acta,183:79 − 93.

    [8]

    Cole D B,Mills D B,Erwin D H,et al.,2020. On the co–evolution of surface oxygen levels and animals[J]. Geobiology,18(3):260 − 281.

    [9]

    Compston W,Zhang Z,Cooper J A,et al.,2008. Further SHRIMP geochronology on the early Cambrian of South China[J]. American Journal of Science,308(4):399 − 420.

    [10]

    Dong L,Shen B,Lee C T,et al.,2015. Germanium/silicon of the Ediacaran–Cambrian Laobao cherts:Implications for the bedded chert formation and paleoenvironment interpretations[J]. Geochemistry,Geophysics,Geosystems,16(3):751 − 763.

    [11]

    Dong Y P,Hui B,Sun S S,et al.,2024. The links between Neoproterozoic tectonics,paleoenvironment and Cambrian explosion in the Yangtze Block,China[J]. Earth Science Reviews,248:104638.

    [12]

    Fan H F,Fu X W,Ward J F,et al.,2021. Mercury isotopes track the cause of carbon perturbations in the Ediacaran ocean[J]. Geology,49(3):248 − 252.

    [13]

    Fan H F,Wen H J,Zhu X K,et al.,2013. Hydrothermal activity during Ediacaran–Cambrian transition:Silicon isotopic evidence[J]. Precambrian Research,224:23 − 35.

    [14]

    方维萱,胡瑞忠,苏文超,等,2002. 大河边–新晃超大型重晶石矿床地球化学特征及形成的地质背景[J]. 岩石学报,18(2):247 − 256.

    Fang W X,Hu R Z,Su W C,et al.,2002. Geochemical characteristics of Dahebian–Gongxi superlargeharite deposits and analysis on its background of tectonie geology,China[J]. Acta Petrologica Sinica,18(2):247 − 256 (in Chinese with English abstract).

    [15]

    Feng L J,Li C,Huang J,et al.,2014. A sulfate control on marine mid–depth euxinia on the early Cambrian (ca. 529–521Ma) Yangtze platform,South China[J]. Precambrian Research,246:123 − 133.

    [16]

    Fu Y,Dong L,Li C,et al.,2016. New Re–Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation[J]. Journal of Earth Science,27(2):271 − 281.

    [17]

    付勇,夏鹏,龙珍,等,2021. 扬子地区震旦纪–寒武纪转折期大陆风化研究进展与展望[J]. 地质论评,67(4):1077 − 1094.

    Fu Y,Xia P,Long Z,et al.,2021. Continental weathering of Yangtze area during Edicaran (Sinian) Cambrian transition stage:Advances and prospects[J]. Geological Review,67(4):1077 − 1094 (in Chinese with English abstract).

    [18]

    Gao P,Li S,Lash G G,et al.,2020. Silicification and Si cycling in a silica–rich ocean during the Ediacaran–Cambrian transition[J]. Chemical Geology,552:119787.

    [19]

    Goldberg T,Strauss H,Guo Q,et al.,2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,254:175 − 193.

    [20]

    Han T,Fan H F,Wen H J,et al.,2020. Petrography and sulfur isotopic compositions of SEDEX ores in the early Cambrian Nanhua Basin,South China[J]. Precambrian Research,345:105757.

    [21]

    Han T,Zhu X Q,Li K,et al.,2015. Metal sources for the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation,South China[J]. Ore Geology Reviews,67:158 − 169.

    [22]

    Haskin L A,Haskin M A,Frey F A,et al.,1968. Relative and Absolute Terrestrial Abundances of the Rare Earths[J]. Origin and Distribution of the Elements,889 − 912.

    [23]

    Hoffman P F,Kaufman A J,Halverson G P,et al.,1998. A Neoproterozoic snowball earth[J]. Science,281:1342 − 1346.

    [24]

    Jiang S Y,Pi D H,Heubeck C,et al.,2009. Early Cambrian ocean anoxia in South China[J]. Nature,459(7248):E5 − E6.

    [25]

    Jin C S,Li C,Algeo T J,et al.,2016. A highly redox–heterogeneous ocean in South China during the early Cambrian (~529–514 Ma):Implications for biota–environment co–evolution[J]. Earth and Planetary Science Letters,441:38 − 51.

    [26]

    Jin C S,Li C,Algeo T J,et al.,2020. Controls on organic matter accumulation on the early–Cambrian western Yangtze Platform,South China[J]. Marine and Petroleum Geology,111:75 − 87.

    [27]

    Kimura H,Watanabe Y,2001. Oceanic anoxia at the Precambrian–Cambrian boundary[J]. Geology,29:995 − 998.

    [28]

    Knoll A H,Carroll S B,1999. Early animal evolution:Emerging views from comparative biology and geology[J]. Science,284:2129 − 2137.

    [29]

    Kucha H,Przylowicz W,1999. Noble metals in organic matter and clay-organic matrices,kupferschiefer,Poland[J]. Economic Geology,94(7):1137 − 1162.

    [30]

    Kucha H,1982. Platinum–group metals in the Zechstein copper deposits,Poland[J]. Economic Geology,77(6):1587 − 1591.

    [31]

    Lan Z W,Li X H,Chu X L,et al.,2017. SIMS U–Pb zircon ages and Ni–Mo–PGE geochemistry of the lower Cambrian Niutitang Formation in South China:Constraints on Ni–Mo–PGE mineralization and stratigraphic correlations[J]. Journal of Asian Earth Sciences,137:141 − 162.

    [32]

    Langsford N R,Jago J B,2023. Lower Cambrian volcanism in the Hawker Group and the Billy Creek Formation,Arrowie Basin,Flinders Ranges,South Australia[J]. Australian Journal of Earth Sciences,70(4):476 − 493.

    [33]

    Lee C T,Jiang H,Ronay E,et al.,2018. Volcanic ash as a driver of enhanced organic carbon burial in the cretaceous[J]. Scientific Reports,8:4197.

    [34]

    Lehmann B,Frei R,Xu L G,et al.,2016. Early Cambrian black shale–hosted Mo–Ni and V mineralization on the rifted margin of the Yangtze platform,China:reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology,111(1):89 − 103.

    [35]

    Lehmann B,Nägler T F,Holland H D,et al.,2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology,35:403 − 406.

    [36]

    Li C,Love G D,Lyons T W,et al.,2010. A stratified redox model for the Ediacaran ocean[J]. Science,328:80 − 83.

    [37]

    Li C,Zhang Z H,Jin C S,et al.,2020. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,546:109676.

    [38]

    Linnemann U,Ovtcharova M,Schaltegger U,et al.,2019. New high–resolution age data from the Ediacaran–Cambrian boundary indicate rapid,ecologically driven onset of the Cambrian explosion[J]. Terra Nova,31(1):49 − 58.

    [39]

    Lyons T W,Reinhard C T,Planavsky N J,2014. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature,506(7488):307 − 315.

    [40]

    Mao J W,Lehmann B,Du A D,et al.,2002. Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology,97:1051 − 1061.

    [41]

    McFadden K A,Huang J,Chu X,et al.,2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences,105:3197 − 3202.

    [42]

    Och L M,Shields–Zhou G A,Poulton S W,et al.,2013. Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J]. Precambrian Research,225:166 − 189.

    [43]

    Och L M,Shields–Zhou G A,2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth Science Reviews,110:26 − 57.

    [44]

    Okada Y,Sawaki Y,Komiya T,et al.,2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng’an and Chengjiang areas,South China[J]. Gondwana Research,25:1027 − 1044.

    [45]

    Pašava J,Frimmel H,Luo T Y,et al.,2010. Extreme PGE concentrations in Lower Cambrian acid tuff layer from the Kunyang phosphate deposit,Yunnan Province,South China–Possible PGE source for Lower Cambrian Mo–Ni–polyelement ore beds[J]. Economic Geology,105:1047 − 1056.

    [46]

    Pi D H,Liu C Q,Shields–Zhou G A,et al.,2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province,South China:Constraints for redox environments and origin of metal[J]. Precambrian Research,225:218 − 229.

    [47]

    Piper D Z,Calvert S E,2009. A marine biogeochemical perspective on black shale deposition[J]. Earth Science Reviews,95(1 − 2):63 − 96.

    [48]

    Sahoo S K,Planavsky N J,Kendall B,et al.,2012. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature,489(7417):546 − 549.

    [49]

    Sawaki Y,Nishizawa M,Suo T,et al.,2008. Internal structures and U–Pb ages of zircons from a tuff layer in the Meishucunian formation,Yunnan Province,South China[J]. Gondwana Research,14(1 − 2):148 − 158.

    [50]

    Schröder S,Grotzinger J P,2007. Evidence for anoxia at the Ediacaran–Cambrian boundary:The record of redox–sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society,164(1):175 − 187.

    [51]

    Shen B,Xiao S H,Zhou C M,et al.,2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin,NW China:Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event?[J]. Precambrian Research,177(3 − 4):241 − 252.

    [52]

    Shi C H,Cao J,Han S C,Hu K,et al.,2021. A review of polymetallic mineralization in lower Cambrian black shales in South China:Combined effects of seawater,hydrothermal fluids,and biological activity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,561:110073.

    [53]

    Wang D,Ling H F,Struck U,et al.,2018. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition[J]. Nature Communications,9(1):2575.

    [54]

    王鸿祯,杨森楠,李思田,1983. 中国东部及邻区中、新生代盆地发育及大陆边缘区的构造发展[J]. 地质学报,57(3):213 − 223.

    Wang H Z,Yang S N,Li S T,1983. Mesozoic and Cenozoic basin formation in east China and adjacent regions and development of the continental margin[J]. Acta Geologica Sinica,57(3):213 − 223 (in Chinese with English abstract).

    [55]

    Wang J G,Chen D Z,Yan D T,et al.,2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran–Cambrian transition and implications for bioradiation[J]. Chemical Geology,306–307:129 − 138.

    [56]

    Wang J,Li Z X,2003. History of Neoproterozoic rift basins in South China:Implications for Rodinia break–up[J]. Precambrian Research,122:141 − 158.

    [57]

    王敏,孙晓明,马名扬,2004. 华南黑色岩系铂多金属矿成矿流体地球化学及其矿床成因意义[J]. 中山大学学报:自然科学版,43(5):98 − 102.

    Wang M,Sun X M,Ma M Y,2004. Geochemistry of ore–forming fluid and its metallogenetic significances of PGE–polymetallic deposits in Lower Cambrian black rock series,Southern China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,43(5):98 − 102 (in Chinese with English abstract).

    [58]

    Wei G Y,Planavsky N J,He T,et al.,2021. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth Science Reviews,214:103506.

    [59]

    Wei S C,Fu Y,Liang H P,et al.,2018. Re–Os geochronology of the Cambrian stage–2 and –3 boundary in Zhijin county,Guizhou province,China[J]. Acta Geochimica,37(2):323 − 333.

    [60]

    Wen H J,Carignan J,Zhang Y X,et al.,2011. Molybdenum isotopic records across the Precambrian–Cambrian boundary[J]. Geology,39:775 − 778.

    [61]

    Wen H J,Fan H F,Zhang Y X,et al.,2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta,164:1 − 16.

    [62]

    吴朝东,申延平,侯泉林,2001. 湘西黑色岩系铂族元素地球化学特征及富集因素[J]. 自然科学进展,11(5):507 − 513.

    Wu C D,Shen Y P,Hou Q L,2001. Geochemistry characteristics and enrichment factors of platinum group elements in Black Rock series in Western Hunan[J]. Progress in Natural Science,11(5):507 − 513 (in Chinese with English abstract).

    [63]

    Wu Y,Ma J X,Lin W L,et al.,2021. New anomalocaridids (Panarthropoda:Radiodonta) from the lower Cambrian Chengjiang Lagerstätte:Biostratigraphic and paleobiogeographic implications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,569:110333.

    [64]

    Wu Y W,Yin R S,Li C,et al.,2022. Global Hg cycle over Ediacaran–Cambrian transition and its implications for environmental and biological evolution[J]. Earth and Planetary Science Letters,587:117551.

    [65]

    夏鹏,付勇,杨镇,等,2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报,94(3):947 − 956.

    Xia P,Fu Y,Yang Z,et al.,2020. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan,northern Guizhou[J]. Acta Geologica Sinica,94(3):947 − 956 (in Chinese with English abstract).

    [66]

    Xu L G,Lehmann B,Mao J W,et al.,2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi–proxy constraints on the paleoenvironment[J]. Chemical Geology,318–319(1):45 − 59.

    [67]

    Xu L G,Lehmann B,Mao J,2013. Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China:Evidence from Mo isotope,PGE,trace element,and REE geochemistry[J]. Ore Geology Reviews,52:66 − 84.

    [68]

    Xue Z X,Yin R S,Lehmann B,et al.,2022. Mercury isotopes reflect variable metal sources as a function of paleo-depositional setting in the Ediacaran-Cambrian Ocean,South China[J]. Precambrian Research,378:106749.

    [69]

    杨恩林,吴攀,吕新彪,等,2021. 塔里木克拉通库鲁克塔格下寒武统底界年龄:锆石LA–ICP–MS U–Pb 定年[J]. 地质学报,95(11):3256 − 3265.

    Yang E L,Wu P,Lü X B,et al.,2021. Dating of the basal Cambrian in the Kuruktag area of the Tarim craton:LA–ICP–MS zircon U–Pb age of tuffs[J]. Acta Geologica Sinica,95(11):3256 − 3265 (in Chinese with English abstract).

    [70]

    Yang Z,Wu P,Fu Y,et al.,2022. Coupling of the redox history and enrichment of Ni–Mo in black shale during the early Cambrian:Constraints from S–Fe isotopes and trace elements of pyrite,South China[J]. Ore Geology Reviews,143:104749.

    [71]

    Ye Y T,Wang H J,Wang X M,et al.,2020. Tracking the evolution of seawater Mo isotopes through the Ediacaran–Cambrian transition[J]. Precambrian Research,350:105929.

    [72]

    Yin R S,Xu L G,Lehmann B,et al.,2017. Anomalous mercury enrichment in Early Cambrian black shales of South China:Mercury isotopes indicate a seawater source[J]. Chemical Geology,467:159 − 167.

    [73]

    曾志刚,陈祖兴,张玉祥,等,2020. 火山热液活动的环境与产物[J]. 海洋科学,44(7):143 − 155.

    Zeng Z G,Chen Z X,Zhang Y X,2020. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences,44(7):143 − 155 (in Chinese with English abstract).

    [74]

    Zhang S H,Li H Y,Jiang G Q,et al.,2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research,259:130 − 142.

    [75]

    Zhou M Z,Luo T Y,Li Z X,et al.,2008. SHRIMP U–Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation,Zunyi,South China[J]. Chinese Science Bulletin,53(4):576 − 583.

    [76]

    周明忠,罗泰义,刘世荣,等,2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义[J]. 中国科学:地球科学,43(7):1195 − 1206.

    Zhou M Z,Luo T Y,Liu S R,et al.,2013. SHRIMP zircon age for a K–bentonite in the top of the Laobao Formation at the Pingyin section,Guizhou,South China[J]. Science China:Earth Sciences,43(7):1195 − 1206 (in Chinese with English abstract).

    [77]

    Zhu G Y,Wang P J,Li T T,et al.,2021. Mercury record of intense hydrothermal activity during the early Cambrian,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,568:110294.

    [78]

    朱茂炎,赵方臣,殷宗军,等,2019. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,49(10):1455 − 1490.

    Zhu M Y,Zhao F C,Yin Z J,et al.,2019. The Cambrian explosion:Advances and perspectives from China[J]. Science China:Earth Sciences,49(10):1455 − 1490 (in Chinese with English abstract).

    [79]

    Zhu R X,Li X H,Hou X G,et al.,2009. SIMS U–Pb zircon age of a tuff layer in the Meishucun section,Yunnan,southwest China:Constraint on the age of the Precambrian–Cambrian boundary[J]. Science in China Series D:Earth Sciences,52:1385 − 1392.

  • 加载中

(4)

(1)

计量
  • 文章访问数:  35
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-04-18
修回日期:  2024-06-03
录用日期:  2024-07-04
刊出日期:  2025-06-20

目录