Preliminary study on the relationship between Early Cambrian volcanism and polymetallic layers in black shales of South China
-
摘要:
寒武纪早期全球性的深水海洋缺氧背景下,华南地区黑色页岩广泛发育,层序稳定。其底部Ni、Mo、V、铂族元素(PGEs)、稀土元素(REEs)等多金属元素发生不同程度地富集。多金属来源至今存在海水、热液以及二者的混合之观点,成矿富集机制仍有多种见解。与此同时,区内火山凝灰岩(钾质斑脱岩)广泛出露。火山活动与多金属层富集的关系需要梳理,本文基于区内已有研究成果,开展区域沉积建造及成岩年代学的梳理、岩石地球化学的收集分析。研究表明:(1)埃迪卡拉纪至早寒武世,火山凝灰岩多期次发育且广泛,火山岩是地层岩性的分界;(2)火山岩与多金属层具有明显的时空及地球化学关联性;(3)地层沉积构造、矿物组成,以及S、Fe、Hg、Mo同位素等地球化学信息均指示有火山活动参与多金属的富集。
Abstract:Black shale exhibits extensive development in South China, with stable stratigraphic distributionunder the anoxic conditions of global deep ocean water during the Early Cambrian. Various elements, such as Ni, Mo, V, platium group elements (PGEs), and rare earth elements (REEs), are enriched to different degrees in the basal layers. However, the source of these polymetals remains controversial, with conflicting theories suggesting origins from seawater, hydrothermal fluids, or a mixture of both. Simultaneously, volcanic activities occurred extensively in South China. In order to explore the relationship between volcanic activities and the accumulation of polymetallic layers, sedimentological, mineralization, diagenetic chronology, and geochemical analysis were conducted in this study. The results show that: (1) Volcanic activities occurred in multiple stages, with volcanic rocks marking stratigraphic boundaries, from the Ediacaran to Early Cambrian; (2) There is a clear spatiotemporal and geochemical correlation between volcanic rocks and polymetallic layers; (3) Sedimentary structure, mineral composition, and geochemical information, such as S, Fe, Hg, and Mo isotopes, indicate that volcanic activities contributed to the enrichment of polymetals.
-
Key words:
- Early Cambrian /
- volcanic activity /
- black shale /
- polymetallic layer /
- South China
-
-
图 1 华南地块埃迪卡拉纪晚期至寒武纪早期古地理简图(据Jiang et al.,2009;Pi et al.,2013;Jin et al.,2016;Chang et al.,2018修改)
Figure 1.
图 2 华南地区早寒武世典型剖面图及凝灰岩锆石U-Pb年龄统计直方图(梅树村、松林剖面数据分别据Compston et al.,2008;Zhou et al.,2008;坝黄、盘门据Chen et al.,2015;柑子坪据Chen et al.,2009)
Figure 2.
图 3 湘黔地区(大竹流水、马路河、三岔、慈利)黑色页岩、多金属层稀土元素配分曲线对比图(数据引自吴朝东等,2001;Xu et al.,2013;Pi et al.,2013;Han et al.,2015;北美页岩数据来自Haskin et al.,1968)
Figure 3.
图 4 湘黔地区(大竹流水、马路河、水东、三岔)铂族元素配分曲线对比图(数据引自Mao et al.,2002;Lehmann et al.,2007;Xu et al.,2013;Pi et al.,2013;Han et al.,2015;C1球粒陨石数据来自Anders and Grevesse,1989)
Figure 4.
表 1 贵州下寒武统黑色岩系含钼多金属矿岩层对比表
Table 1. Correlation table of molybdenum-bearing polymetallic ore strata of Lower Cambrian black rock series in Guizhou
矿床 纳雍县水东
Ni-Mo矿松林Ni-Mo
多金属矿播州区冉村沟Mo
多金属矿铜仁坝黄Mo矿 三穗海山V矿 上覆地层 明心寺组 明心寺组 明心寺组 九门冲组 九门冲组 含矿地层 牛蹄塘组 牛蹄塘组 牛蹄塘组 九门冲组一段 留茶坡组 含矿岩组
特征深灰色至黑色粉
砂质泥岩、碳质泥岩、含硅质磷块
岩、泥质灰岩。厚约0.5~12 m。薄至中厚层状碳质页岩,见较多高碳质页岩,底部含矿结核黏土岩、Ni-
Mo、V矿层。厚约1~4.5 m。黑色含碳质泥岩或碳质泥岩为主,局部夹纹层状灰岩,底部薄层或透镜状硅质磷块岩。厚21~40 m。 以黑色碳质页岩为主,底部为层状、透镜状磷块岩,
中部为黑色碳质页岩、条纹状硅质
岩,上部为泥质
灰岩。顶部黑色薄层硅
质岩夹黑色碳质页岩,底部黑色、灰黑色薄至中厚层硅质岩。厚约15~80 m。下伏地层 灯影组 灯影组 灯影组 留茶坡组 陡山沱组 矿物组成 黄铁矿、红砷镍
矿、紫硫镍铁矿、硫钼矿及少量针
镍矿等。黄铁矿、针镍矿、锑硫镍矿、碳硫
钼矿、重晶石、石英、石膏等。黄铁矿、胶硫钼
矿、红砷镍矿、
针镍矿、紫硫镍铁矿等。黄铁矿、二硫镍
矿、辉砷镍矿、闪锌矿、黄铜矿等。未见独立的V矿石,矿石主要由碳质页岩、硅质岩组成。 -
[1] Anders E,Grevesse N,1989. Abundances of the elements:Meteoritic and solar[J]. Geochimica et Cosmochimica Acta,53(1):179 − 214.
[2] Brengman L A,Fedo C M,2018. Development of a mixed seawater–hydrothermal fluid geochemical signature during alteration of volcanic rocks in the Archean (similar to 2.7 Ga) Abitibi Greenstone Belt,Canada[J]. Geochimica et Cosmochimica Acta,227:227 − 245.
[3] Chang H J,Chu X L,Feng L J,et al.,2018. Marine redox stratification on the earliest Cambrian (ca. 542–529 Ma) Yangtze Platform[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,504:75 − 85.
[4] 陈多福,潘晶铭,徐文新,等,1998. 华南震旦纪基性火山岩的地球化学及构造环境[J]. 岩石学报,14(3):343 − 350.
Chen D F,Pan J M,Xu W X,et al.,1998. Geochemistry of Sinian basalts from South China and its tectonic setting[J]. Acta Petrologica Sinica,14(3):343 − 350 (in Chinese with English abstract).
[5] Chen D Z,Wang J G,Qing H R,et al.,2009. Hydrothermal venting activities in the early Cambrian,South China:petrological,geochronological and stable isotopic constraints[J]. Chemical Geology,258(3 − 4):168 − 181.
[6] Chen D Z,Zhou X Q,Fu Y,et al.,2015. New U–Pb zircon ages of the Ediacaran–Cambrian boundary strata in South China[J]. Terra Nova,27(1):62 − 68.
[7] Cheng M,Li C,Zhou L,et al.,2016. Marine Mo biogeochemistry in the context of dynamically euxinic mid–depth waters:A case study of the lower Cambrian Niutitang shales,South China[J]. Geochimica et Cosmochimica Acta,183:79 − 93.
[8] Cole D B,Mills D B,Erwin D H,et al.,2020. On the co–evolution of surface oxygen levels and animals[J]. Geobiology,18(3):260 − 281.
[9] Compston W,Zhang Z,Cooper J A,et al.,2008. Further SHRIMP geochronology on the early Cambrian of South China[J]. American Journal of Science,308(4):399 − 420.
[10] Dong L,Shen B,Lee C T,et al.,2015. Germanium/silicon of the Ediacaran–Cambrian Laobao cherts:Implications for the bedded chert formation and paleoenvironment interpretations[J]. Geochemistry,Geophysics,Geosystems,16(3):751 − 763.
[11] Dong Y P,Hui B,Sun S S,et al.,2024. The links between Neoproterozoic tectonics,paleoenvironment and Cambrian explosion in the Yangtze Block,China[J]. Earth Science Reviews,248:104638.
[12] Fan H F,Fu X W,Ward J F,et al.,2021. Mercury isotopes track the cause of carbon perturbations in the Ediacaran ocean[J]. Geology,49(3):248 − 252.
[13] Fan H F,Wen H J,Zhu X K,et al.,2013. Hydrothermal activity during Ediacaran–Cambrian transition:Silicon isotopic evidence[J]. Precambrian Research,224:23 − 35.
[14] 方维萱,胡瑞忠,苏文超,等,2002. 大河边–新晃超大型重晶石矿床地球化学特征及形成的地质背景[J]. 岩石学报,18(2):247 − 256.
Fang W X,Hu R Z,Su W C,et al.,2002. Geochemical characteristics of Dahebian–Gongxi superlargeharite deposits and analysis on its background of tectonie geology,China[J]. Acta Petrologica Sinica,18(2):247 − 256 (in Chinese with English abstract).
[15] Feng L J,Li C,Huang J,et al.,2014. A sulfate control on marine mid–depth euxinia on the early Cambrian (ca. 529–521Ma) Yangtze platform,South China[J]. Precambrian Research,246:123 − 133.
[16] Fu Y,Dong L,Li C,et al.,2016. New Re–Os isotopic constrains on the formation of the metalliferous deposits of the Lower Cambrian Niutitang formation[J]. Journal of Earth Science,27(2):271 − 281.
[17] 付勇,夏鹏,龙珍,等,2021. 扬子地区震旦纪–寒武纪转折期大陆风化研究进展与展望[J]. 地质论评,67(4):1077 − 1094.
Fu Y,Xia P,Long Z,et al.,2021. Continental weathering of Yangtze area during Edicaran (Sinian) Cambrian transition stage:Advances and prospects[J]. Geological Review,67(4):1077 − 1094 (in Chinese with English abstract).
[18] Gao P,Li S,Lash G G,et al.,2020. Silicification and Si cycling in a silica–rich ocean during the Ediacaran–Cambrian transition[J]. Chemical Geology,552:119787.
[19] Goldberg T,Strauss H,Guo Q,et al.,2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform:evidence from biogenic sulphur and organic carbon isotopes[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,254:175 − 193.
[20] Han T,Fan H F,Wen H J,et al.,2020. Petrography and sulfur isotopic compositions of SEDEX ores in the early Cambrian Nanhua Basin,South China[J]. Precambrian Research,345:105757.
[21] Han T,Zhu X Q,Li K,et al.,2015. Metal sources for the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation,South China[J]. Ore Geology Reviews,67:158 − 169.
[22] Haskin L A,Haskin M A,Frey F A,et al.,1968. Relative and Absolute Terrestrial Abundances of the Rare Earths[J]. Origin and Distribution of the Elements,889 − 912.
[23] Hoffman P F,Kaufman A J,Halverson G P,et al.,1998. A Neoproterozoic snowball earth[J]. Science,281:1342 − 1346.
[24] Jiang S Y,Pi D H,Heubeck C,et al.,2009. Early Cambrian ocean anoxia in South China[J]. Nature,459(7248):E5 − E6.
[25] Jin C S,Li C,Algeo T J,et al.,2016. A highly redox–heterogeneous ocean in South China during the early Cambrian (~529–514 Ma):Implications for biota–environment co–evolution[J]. Earth and Planetary Science Letters,441:38 − 51.
[26] Jin C S,Li C,Algeo T J,et al.,2020. Controls on organic matter accumulation on the early–Cambrian western Yangtze Platform,South China[J]. Marine and Petroleum Geology,111:75 − 87.
[27] Kimura H,Watanabe Y,2001. Oceanic anoxia at the Precambrian–Cambrian boundary[J]. Geology,29:995 − 998.
[28] Knoll A H,Carroll S B,1999. Early animal evolution:Emerging views from comparative biology and geology[J]. Science,284:2129 − 2137.
[29] Kucha H,Przylowicz W,1999. Noble metals in organic matter and clay-organic matrices,kupferschiefer,Poland[J]. Economic Geology,94(7):1137 − 1162.
[30] Kucha H,1982. Platinum–group metals in the Zechstein copper deposits,Poland[J]. Economic Geology,77(6):1587 − 1591.
[31] Lan Z W,Li X H,Chu X L,et al.,2017. SIMS U–Pb zircon ages and Ni–Mo–PGE geochemistry of the lower Cambrian Niutitang Formation in South China:Constraints on Ni–Mo–PGE mineralization and stratigraphic correlations[J]. Journal of Asian Earth Sciences,137:141 − 162.
[32] Langsford N R,Jago J B,2023. Lower Cambrian volcanism in the Hawker Group and the Billy Creek Formation,Arrowie Basin,Flinders Ranges,South Australia[J]. Australian Journal of Earth Sciences,70(4):476 − 493.
[33] Lee C T,Jiang H,Ronay E,et al.,2018. Volcanic ash as a driver of enhanced organic carbon burial in the cretaceous[J]. Scientific Reports,8:4197.
[34] Lehmann B,Frei R,Xu L G,et al.,2016. Early Cambrian black shale–hosted Mo–Ni and V mineralization on the rifted margin of the Yangtze platform,China:reconnaissance chromium isotope data and a refined metallogenic model[J]. Economic Geology,111(1):89 − 103.
[35] Lehmann B,Nägler T F,Holland H D,et al.,2007. Highly metalliferous carbonaceous shale and Early Cambrian seawater[J]. Geology,35:403 − 406.
[36] Li C,Love G D,Lyons T W,et al.,2010. A stratified redox model for the Ediacaran ocean[J]. Science,328:80 − 83.
[37] Li C,Zhang Z H,Jin C S,et al.,2020. Spatiotemporal evolution and causes of marine euxinia in the early Cambrian Nanhua Basin (South China)[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,546:109676.
[38] Linnemann U,Ovtcharova M,Schaltegger U,et al.,2019. New high–resolution age data from the Ediacaran–Cambrian boundary indicate rapid,ecologically driven onset of the Cambrian explosion[J]. Terra Nova,31(1):49 − 58.
[39] Lyons T W,Reinhard C T,Planavsky N J,2014. The rise of oxygen in Earth's early ocean and atmosphere[J]. Nature,506(7488):307 − 315.
[40] Mao J W,Lehmann B,Du A D,et al.,2002. Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in lower Cambrian black shales of South China and its geologic significance[J]. Economic Geology,97:1051 − 1061.
[41] McFadden K A,Huang J,Chu X,et al.,2008. Pulsed oxidation and biological evolution in the Ediacaran Doushantuo Formation[J]. Proceedings of the National Academy of Sciences,105:3197 − 3202.
[42] Och L M,Shields–Zhou G A,Poulton S W,et al.,2013. Redox changes in Early Cambrian black shales at Xiaotan section,Yunnan Province,South China[J]. Precambrian Research,225:166 − 189.
[43] Och L M,Shields–Zhou G A,2012. The Neoproterozoic oxygenation event:Environmental perturbations and biogeochemical cycling[J]. Earth Science Reviews,110:26 − 57.
[44] Okada Y,Sawaki Y,Komiya T,et al.,2014. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges,Weng’an and Chengjiang areas,South China[J]. Gondwana Research,25:1027 − 1044.
[45] Pašava J,Frimmel H,Luo T Y,et al.,2010. Extreme PGE concentrations in Lower Cambrian acid tuff layer from the Kunyang phosphate deposit,Yunnan Province,South China–Possible PGE source for Lower Cambrian Mo–Ni–polyelement ore beds[J]. Economic Geology,105:1047 − 1056.
[46] Pi D H,Liu C Q,Shields–Zhou G A,et al.,2013. Trace and rare earth element geochemistry of black shale and kerogen in the early Cambrian Niutitang Formation in Guizhou province,South China:Constraints for redox environments and origin of metal[J]. Precambrian Research,225:218 − 229.
[47] Piper D Z,Calvert S E,2009. A marine biogeochemical perspective on black shale deposition[J]. Earth Science Reviews,95(1 − 2):63 − 96.
[48] Sahoo S K,Planavsky N J,Kendall B,et al.,2012. Ocean oxygenation in the wake of the Marinoan glaciation[J]. Nature,489(7417):546 − 549.
[49] Sawaki Y,Nishizawa M,Suo T,et al.,2008. Internal structures and U–Pb ages of zircons from a tuff layer in the Meishucunian formation,Yunnan Province,South China[J]. Gondwana Research,14(1 − 2):148 − 158.
[50] Schröder S,Grotzinger J P,2007. Evidence for anoxia at the Ediacaran–Cambrian boundary:The record of redox–sensitive trace elements and rare earth elements in Oman[J]. Journal of the Geological Society,164(1):175 − 187.
[51] Shen B,Xiao S H,Zhou C M,et al.,2010. Carbon and sulfur isotope chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin,NW China:Basin stratification in the aftermath of an Ediacaran glaciation postdating the Shuram event?[J]. Precambrian Research,177(3 − 4):241 − 252.
[52] Shi C H,Cao J,Han S C,Hu K,et al.,2021. A review of polymetallic mineralization in lower Cambrian black shales in South China:Combined effects of seawater,hydrothermal fluids,and biological activity[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,561:110073.
[53] Wang D,Ling H F,Struck U,et al.,2018. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition[J]. Nature Communications,9(1):2575.
[54] 王鸿祯,杨森楠,李思田,1983. 中国东部及邻区中、新生代盆地发育及大陆边缘区的构造发展[J]. 地质学报,57(3):213 − 223.
Wang H Z,Yang S N,Li S T,1983. Mesozoic and Cenozoic basin formation in east China and adjacent regions and development of the continental margin[J]. Acta Geologica Sinica,57(3):213 − 223 (in Chinese with English abstract).
[55] Wang J G,Chen D Z,Yan D T,et al.,2012. Evolution from an anoxic to oxic deep ocean during the Ediacaran–Cambrian transition and implications for bioradiation[J]. Chemical Geology,306–307:129 − 138.
[56] Wang J,Li Z X,2003. History of Neoproterozoic rift basins in South China:Implications for Rodinia break–up[J]. Precambrian Research,122:141 − 158.
[57] 王敏,孙晓明,马名扬,2004. 华南黑色岩系铂多金属矿成矿流体地球化学及其矿床成因意义[J]. 中山大学学报:自然科学版,43(5):98 − 102.
Wang M,Sun X M,Ma M Y,2004. Geochemistry of ore–forming fluid and its metallogenetic significances of PGE–polymetallic deposits in Lower Cambrian black rock series,Southern China[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,43(5):98 − 102 (in Chinese with English abstract).
[58] Wei G Y,Planavsky N J,He T,et al.,2021. Global marine redox evolution from the late Neoproterozoic to the early Paleozoic constrained by the integration of Mo and U isotope records[J]. Earth Science Reviews,214:103506.
[59] Wei S C,Fu Y,Liang H P,et al.,2018. Re–Os geochronology of the Cambrian stage–2 and –3 boundary in Zhijin county,Guizhou province,China[J]. Acta Geochimica,37(2):323 − 333.
[60] Wen H J,Carignan J,Zhang Y X,et al.,2011. Molybdenum isotopic records across the Precambrian–Cambrian boundary[J]. Geology,39:775 − 778.
[61] Wen H J,Fan H F,Zhang Y X,et al.,2015. Reconstruction of early Cambrian ocean chemistry from Mo isotopes[J]. Geochimica et Cosmochimica Acta,164:1 − 16.
[62] 吴朝东,申延平,侯泉林,2001. 湘西黑色岩系铂族元素地球化学特征及富集因素[J]. 自然科学进展,11(5):507 − 513.
Wu C D,Shen Y P,Hou Q L,2001. Geochemistry characteristics and enrichment factors of platinum group elements in Black Rock series in Western Hunan[J]. Progress in Natural Science,11(5):507 − 513 (in Chinese with English abstract).
[63] Wu Y,Ma J X,Lin W L,et al.,2021. New anomalocaridids (Panarthropoda:Radiodonta) from the lower Cambrian Chengjiang Lagerstätte:Biostratigraphic and paleobiogeographic implications[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,569:110333.
[64] Wu Y W,Yin R S,Li C,et al.,2022. Global Hg cycle over Ediacaran–Cambrian transition and its implications for environmental and biological evolution[J]. Earth and Planetary Science Letters,587:117551.
[65] 夏鹏,付勇,杨镇,等,2020. 黔北镇远牛蹄塘组黑色页岩沉积环境与有机质富集关系[J]. 地质学报,94(3):947 − 956.
Xia P,Fu Y,Yang Z,et al.,2020. The relationship between sedimentary environment and organic matter accumulation in the Niutitang black shale in Zhenyuan,northern Guizhou[J]. Acta Geologica Sinica,94(3):947 − 956 (in Chinese with English abstract).
[66] Xu L G,Lehmann B,Mao J W,et al.,2012. Mo isotope and trace element patterns of Lower Cambrian black shales in South China:Multi–proxy constraints on the paleoenvironment[J]. Chemical Geology,318–319(1):45 − 59.
[67] Xu L G,Lehmann B,Mao J,2013. Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China:Evidence from Mo isotope,PGE,trace element,and REE geochemistry[J]. Ore Geology Reviews,52:66 − 84.
[68] Xue Z X,Yin R S,Lehmann B,et al.,2022. Mercury isotopes reflect variable metal sources as a function of paleo-depositional setting in the Ediacaran-Cambrian Ocean,South China[J]. Precambrian Research,378:106749.
[69] 杨恩林,吴攀,吕新彪,等,2021. 塔里木克拉通库鲁克塔格下寒武统底界年龄:锆石LA–ICP–MS U–Pb 定年[J]. 地质学报,95(11):3256 − 3265.
Yang E L,Wu P,Lü X B,et al.,2021. Dating of the basal Cambrian in the Kuruktag area of the Tarim craton:LA–ICP–MS zircon U–Pb age of tuffs[J]. Acta Geologica Sinica,95(11):3256 − 3265 (in Chinese with English abstract).
[70] Yang Z,Wu P,Fu Y,et al.,2022. Coupling of the redox history and enrichment of Ni–Mo in black shale during the early Cambrian:Constraints from S–Fe isotopes and trace elements of pyrite,South China[J]. Ore Geology Reviews,143:104749.
[71] Ye Y T,Wang H J,Wang X M,et al.,2020. Tracking the evolution of seawater Mo isotopes through the Ediacaran–Cambrian transition[J]. Precambrian Research,350:105929.
[72] Yin R S,Xu L G,Lehmann B,et al.,2017. Anomalous mercury enrichment in Early Cambrian black shales of South China:Mercury isotopes indicate a seawater source[J]. Chemical Geology,467:159 − 167.
[73] 曾志刚,陈祖兴,张玉祥,等,2020. 火山热液活动的环境与产物[J]. 海洋科学,44(7):143 − 155.
Zeng Z G,Chen Z X,Zhang Y X,2020. Seafloor hydrothermal activities and their geological environments and products[J]. Marine Sciences,44(7):143 − 155 (in Chinese with English abstract).
[74] Zhang S H,Li H Y,Jiang G Q,et al.,2015. New paleomagnetic results from the Ediacaran Doushantuo Formation in South China and their paleogeographic implications[J]. Precambrian Research,259:130 − 142.
[75] Zhou M Z,Luo T Y,Li Z X,et al.,2008. SHRIMP U–Pb zircon age of tuff at the bottom of the Lower Cambrian Niutitang Formation,Zunyi,South China[J]. Chinese Science Bulletin,53(4):576 − 583.
[76] 周明忠,罗泰义,刘世荣,等,2013. 贵州江口平引老堡组顶部的锆石SHRIMP年龄与对比意义[J]. 中国科学:地球科学,43(7):1195 − 1206.
Zhou M Z,Luo T Y,Liu S R,et al.,2013. SHRIMP zircon age for a K–bentonite in the top of the Laobao Formation at the Pingyin section,Guizhou,South China[J]. Science China:Earth Sciences,43(7):1195 − 1206 (in Chinese with English abstract).
[77] Zhu G Y,Wang P J,Li T T,et al.,2021. Mercury record of intense hydrothermal activity during the early Cambrian,South China[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,568:110294.
[78] 朱茂炎,赵方臣,殷宗军,等,2019. 中国的寒武纪大爆发研究:进展与展望[J]. 中国科学:地球科学,49(10):1455 − 1490.
Zhu M Y,Zhao F C,Yin Z J,et al.,2019. The Cambrian explosion:Advances and perspectives from China[J]. Science China:Earth Sciences,49(10):1455 − 1490 (in Chinese with English abstract).
[79] Zhu R X,Li X H,Hou X G,et al.,2009. SIMS U–Pb zircon age of a tuff layer in the Meishucun section,Yunnan,southwest China:Constraint on the age of the Precambrian–Cambrian boundary[J]. Science in China Series D:Earth Sciences,52:1385 − 1392.
-