基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

陈欢, 冯晓亮, 刘一民, 赵晗, 刘洋, 郭浪, 张军. 2024. 基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究. 沉积与特提斯地质, 44(3): 572-581. doi: 10.19826/j.cnki.1009-3850.2024.08006
引用本文: 陈欢, 冯晓亮, 刘一民, 赵晗, 刘洋, 郭浪, 张军. 2024. 基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究. 沉积与特提斯地质, 44(3): 572-581. doi: 10.19826/j.cnki.1009-3850.2024.08006
CHEN Huan, FENG Xiaoliang, LIU Yimin, ZHAO Han, LIU Yang, GUO Lang, ZHANG Jun. 2024. Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area. Sedimentary Geology and Tethyan Geology, 44(3): 572-581. doi: 10.19826/j.cnki.1009-3850.2024.08006
Citation: CHEN Huan, FENG Xiaoliang, LIU Yimin, ZHAO Han, LIU Yang, GUO Lang, ZHANG Jun. 2024. Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area. Sedimentary Geology and Tethyan Geology, 44(3): 572-581. doi: 10.19826/j.cnki.1009-3850.2024.08006

基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

  • 基金项目: 国家自然科学青年基金资助项目“断层面库仑应力变化监测方法的力学机理实验研究”(41804089);中国地质调查局项目“地质灾害监测预警与防治支撑(探矿工艺所)”(DD20230447)
详细信息
    作者简介: 陈欢(1988—),高级工程师,长期从事地质灾害监测预警、风险评价等研究工作。E-mail:chuan@mail.cgs.gov.cn
    通讯作者: 冯晓亮(1980—),高级工程师,长期从事地质灾害监测预警,测绘工程等研究工作。E-mail:8391650@qq.com
  • 中图分类号: P694

Research on predicting surface displacement of landslides based on CNN-BiLSTM-Attention in the Three Gorges reservoir area

More Information
  • 地表位移预测在滑坡监测预警中具有重要意义,建立稳定可靠的滑坡位移预测模型是关键。本文基于卷积神经网络和注意力机制的滑坡位移预测方法,并以三峡库区黄泥巴蹬坎滑坡为例进行了验证。本文综合分析了该滑坡长达8年的降雨量、库水位和地表位移等监测数据,建立了结合卷积神经网络(convolutional neural network, CNN)、双向长短期记忆(bidirectional long short-term memory, BiLSTM)网络和注意力机制(attention)的CNN-BiLSTM-Attention深度学习组合预测模型,采用了适应性学习率和正则化技术进行模型训练,提高了模型的泛化能力同时避免过拟合,并与传统LSTM模型进行对比验证。结果表明:相较于传统的机器学习和神经网络方法,该模型在滑坡位移预测精度上取得了显著提升,预测模型拟合优度(R2)达0.989,平均绝对百分比误差(MAPE)仅为0.059。

  • 加载中
  • 图 1  滑坡正射影像及相关特征要素(a. 研究区正射影像图;b. 研究区构造纲要图;c. 滑坡后部平台;d. 滑坡中前部斜坡)

    Figure 1. 

    图 2  CNN-BiLSTM-Attention预测模型结构示意图

    Figure 2. 

    图 3  岩心揭示的滑体及滑带特征

    Figure 3. 

    图 4  黄泥巴蹬坎滑坡监测点位布置示意图

    Figure 4. 

    图 5  GPS1和GPS4点位多参数监测曲线图

    Figure 5. 

    图 6  滑坡水平合成位移预测曲线效果图(GPS1和GPS4点位)

    Figure 6. 

    图 7  预测模型损失函数曲线(GPS1和GPS4点位)

    Figure 7. 

    图 8  LSTM模型预测曲线效果图(GPS1和GPS4点位)

    Figure 8. 

    图 9  LSTM预测模型损失函数(GPS1和GPS4点位)

    Figure 9. 

    表 1  模型参数设置表

    Table 1.  Configuration parameters for CNN-BiLSTM-Attention

    参数名称参数值
    核心参数输入维度(input_dim)3
    输出维度(units)128
    输入序列长度(input_length)8
    随机失活(dropout)0.2
    训练参数迭代次数(epochs)20
    学习率(learning rate)0.001
    每次学习样本数量(batch_size)32
    验证集占比(validation_split)0.2
    下载: 导出CSV

    表 2  CNN-BiLSTM-Attention预测模型性能指标

    Table 2.  Performance index of the CNN-BiLSTM-Attention prediction model

    考核指标GPS1点位GPS4点位
    拟合优度(R20.9890.995
    平均绝对百分比误差(MAPE)0.0590.059
    均方根误差(RMSE)0.0300.021
    平均绝对误差(MAE)0.0590.092
    下载: 导出CSV

    表 3  LSTM预测模型性能指标

    Table 3.  Performance index of the LSTM prediction model

    考核指标GPS1点位GPS4点位
    拟合优度(R20.7200.719
    平均绝对百分比误差(MAPE)0.2240.084
    均方根误差(RMSE)14.05635.529
    平均绝对误差(MAE)11.92933.096
    下载: 导出CSV
  • [1]

    Alizadeh B,Bafti A G,Kamangir H,et al.,2021. A novel attention-based LSTM cell post-processor coupled with bayesian optimization for streamflow prediction[J]. Journal of Hydrology,601:126526. doi: 10.1016/j.jhydrol.2021.126526

    [2]

    Corominas J,Moya J,Ledesma A,et al.,2005. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees,Spain)[J]. Landslides, 2(2):83 − 96.

    [3]

    邓国仕,郑万模,杨桂花,等,2011. 四川丹巴县甲居滑坡GPS监测结果及分析[J]. 沉积与特提斯地质,31(2):99 − 104. doi: 10.3969/j.issn.1009-3850.2011.02.014

    Deng G S,Zheng W M,Yang G H,et al.,2011. GPS monitoring of the Jiaju landslide in Danba,Sichuan[J]. Sedimentary Geology and Tethyan Geology,31(2):99 − 104 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2011.02.014

    [4]

    Hochreite S,Schmidhuber J,1997. Long short-term memory[J]. Neural Computer, 9(8):1735 − 1780.

    [5]

    Huang F M,Huang J S,Jiang S H,et al.,2017. Landslide displacement prediction based on multivariate chaotic model and extreme learning machine[J]. Engineering Geology,218:173 − 186. doi: 10.1016/j.enggeo.2017.01.016

    [6]

    Kayacan E,Ulutas B,Kaynak O,2010. Grey system theory-based models in time series prediction[J]. Expert Systems with Applications,37(2):1784 − 1789. doi: 10.1016/j.eswa.2009.07.064

    [7]

    Li H J,Xu Q,He Y S,et al.,2018. Prediction of landslide displacement with an ensemble based extreme learning machine and copula models[J]. Landslides,15:2047 − 2059. doi: 10.1007/s10346-018-1020-2

    [8]

    Lian C,Zeng Z G,Yao W,et al.,2015. Multiple neural networks switched prediction for landslide displacement[J]. Engineering Geology,186:91 − 99. doi: 10.1016/j.enggeo.2014.11.014

    [9]

    Liu G,Guo J B,2019. Bidirectional LSTM with attention mechanism and convolutional layer for text classification[J]. Neurocomputing,337(C):325 − 338.

    [10]

    Ma T S,Xiang G F,Shi Y F,et al.,2022. Horizontal in situ stresses prediction using a cnn-bilstm-attention hybrid neural network[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 8(5):1 − 26.

    [11]

    Medsker L R,Jain L C,2001. Recurrent neural networks[J]. Design and Applications,5:64 − 67.

    [12]

    Miao F S,Wu Y P,Xie Y H,et al.,2018. Prediction of landslide displacement with step-like behavior based on multialgorithm optimization and a support vector regression model[J]. Landslides, 15(3):475 − 488.

    [13]

    Mufundirwa A,Fujii Y,Kodama J,2010. A new practical method for prediction of geomechanical failure-time[J]. International Journal of Rock Mechanics And Mining Sciences,47(7):1079 − 1090. doi: 10.1016/j.ijrmms.2010.07.001

    [14]

    Neil D,Pfeiffer M,Liu S C,2016. Phased LSTM:Accelerating Recurrent Network Training for Long or Event-based Sequences[C]. NIPS'16:Proceedings of the 30th International Conference on Neural Information Processing Systems,3889 − 3897.

    [15]

    Peter Naur,1975. Concise survey of computer methods [M]. New York:Petrocelli Books.

    [16]

    Reichenbach P,Rossi M,Malamud B,et al.,2018. A review of statistically based landslide susceptibility models[J]. Earth-Science Reviews,180:60 − 91. doi: 10.1016/j.earscirev.2018.03.001

    [17]

    Saito M,1965. Forecasting the time of occurrence of a slope failure. In:Proceedings of the 6th International Mechanics and Foundation Engineering [C]. 537 − 541.

    [18]

    Thiebers H,2014. Integration of a limit-equilibrium model into a landslide early warning system[J]. Landslides,11(5):859 − 875. doi: 10.1007/s10346-013-0416-2

    [19]

    王家柱,高延超,铁永波,等,2023. 基于斜坡单元的山区城镇滑坡灾害易发性评价:以康定为例[J]. 沉积与特提斯地质,43(3):640 − 650.

    Wang J Z,Gao Y C,Tie Y B,et al.,2023. Landslide susceptibility assessment based on slope units of mountainous cities and towns:A case study of Kangding city[J]. Sedimentary Geology and Tethyan Geology,43(3):640 − 650 (in Chinese with English abstract).

    [20]

    许强,陈建君,冯文凯,等,2009. 斜坡地震响应的物理模拟试验研究[J]. 四川大学学报:工程科学版,41(3):266 − 272.

    Xu Q,Chen J J,Feng W K,et al.,2009. Study of the Seismic Response of Slopes by Physical Modeling[J]. Journal of Sichuan University(Engineering Science Edition),41(3):266 − 272 (in Chinese with English abstract).

    [21]

    杨背背,殷坤龙,杜娟,2018. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J]. 岩石力学与工程学报,37(10):2334 − 2343.

    Yang B B,Yin K L,Du J,et al.,2018. A model for predicting landslide displacement based on time series and long and short term memory neural network[J]. Chinese Journal of Rock Mechanics and Engineering,37(10):2334 − 2343 (in Chinese with English abstract).

    [22]

    Yang B B,Yin K L,Lacasse S,et al.,2019. Time series analysis and long short-term memory neural network to predict landslide displacement[J]. Landslides,16:677 − 694. doi: 10.1007/s10346-018-01127-x

    [23]

    殷坤龙,晏同珍,1996. 滑坡预测及相关模型[J]. 岩石力学与工程学报,15(1):1 − 8. doi: 10.3321/j.issn:1000-6915.1996.01.001

    Yin K L,Yan T Z,1996. Landslide prediction and relevant models[J]. Chinese Journal of Rock Mechanics and Engineering,15(1):1 − 8 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.1996.01.001

    [24]

    Zhang W Y,Zhou H Y,Bao X H,et al.,2023. Outlet water temperature prediction of energy pile based on spatial-temporal feature extraction through CNN–LSTM hybrid model[J]. Energy,264(1):126 − 190.

    [25]

    Zhou C,Yin K L,Cao Y,et al.,2016. Application of time series analysis and PSO-SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir, China[J]. Engineering Geology,204:108 − 120. doi: 10.1016/j.enggeo.2016.02.009

  • 加载中

(9)

(3)

计量
  • 文章访问数:  837
  • PDF下载数:  187
  • 施引文献:  0
出版历程
收稿日期:  2024-05-29
修回日期:  2024-08-15
录用日期:  2024-08-20
刊出日期:  2024-09-30

目录