Evaluation of ecological environment quality and analysis of influencing factors based on IRSEI: A case study of the southern region of Panzhihua
-
摘要:
矿业活动区生态环境脆弱,水土流失、植被破坏、生物多样性降低等生态环境问题频现。为深层次、多样化评价矿业活动区生态环境质量,本文提出一种改进型遥感生态指数(IRSEI),它在原有遥感生态指数(RSEI)基础上,引入生物多样性指数,更好地描述了生态环境的多样性和复杂性。本文以攀枝花南部地区为例,利用陆地卫星(Landsat)影像和数字高程模型(DEM)数据计算了2000—2022年的IRSEI值,基于转移路径和局部空间自相关指标分析了生态环境质量时空分布和变化特征,并采用地理探测器开展了成因分析。结果表明,研究区生态环境质量呈现出明显两极分化趋势,生态质量优良和较差的区域面积均呈现增加趋势,而中等生态质量区域面积减少。研究区生态环境质量在空间上呈现出显著聚集性,高度聚集区主要分布在北部和东部的山区,低度聚集区主要分布在金沙江两岸和城镇区。影响生态环境质量的主要因素是归一化植被指数(NDVI)、干度指数(NDBSI)和生物多样性指数(BI),而热度指数(LST)的影响较小。生态环境质量改善主要归因于植被覆盖度提高和生物多样性增加,而生态环境质量恶化主要受到矿业开发、石漠化和城市扩张影响。本文为区域生态环境监测和保护提供了一种新的方法和参考。
Abstract:The ecological environment in mining activity areas is fragile, with frequent ecological problems such as soil erosion, vegetation damage, and reduced biodiversity.To provide a comprehensive and diverse evaluation of ecological environment quality in mining areas, this paper presents an improved remote sensing ecological index (IRSEI). By incorporating a biodiversity index into the original remote sensing ecological index (RSEI), it better depicts the diversity and complexity of the ecological environment. Taking the southern region of Panzhihua as a case study, IRSEI values were calculated for the years 2000 to 2022 utilizing landsat images and digital elevation model (DEM) data. Based on transfer path analysis and local spatial autocorrelation indicators, the spatiotemporal distribution and change characteristics of ecological environment quality were analyzed. Additionally, causality analysis was conducted using geographic detectors. The results show that there is a clear polarization trend in the ecological environment quality of the study area. Areas with excellent and poor ecological quality both exhibit an increasing trend in area, while areas with moderate ecological quality are decreasing. The spatial distribution of ecological environment quality in the study area shows significant clustering. Highly clustered areas are mainly distributed in the mountainous regions in the north and east, while lowly clustered areas are mainly distributed along the banks of the Jinsha River and in urban areas. The main factors influencing the ecological environment quality are normalized difference vegetation index (NDVI), normalized difference built-up and soil index (NDBSI), and biodiversity index (BI), while the influence of land surface temperature (LST) is relatively minor. The improvement in ecological environment quality is mainly attributed to increased vegetation coverage and biodiversity. Conversely, the deterioration of ecological environment quality is mainly affected by mining development, rocky desertification, and urban expansion. This paper provides a new method and reference for regional ecological environment monitoring and protection.
-
-
图 1 研究区地理位置图(a),构造纲要图(b,据刘洪等,2020修改)和研究区岩性简图①(c)
Figure 1.
表 1 研究区数据源信息表
Table 1. Data source information table for the study area
数据类型 获取时间 空间分辨率 数据质量 数据来源 TM 2000年12月19日 30 m 无云,沿河有水汽影响 遥感影像数据来源于GEE、
DEM数据下载于地理空间数据云
(ASTER GDEM )2005年1月31日 30 m 无云,质量好 2010年1月29日 30 m 无云,质量好 OLI 2015年1月27日 30 m、15 m 无云,质量好 2022年1月30日 30 m、15 m 无云,质量好 DEM 2010年 30 m / 表 2 生物多样性指标权重表(刘少阳等,2020)
Table 2. Weight table of biodiversity indicators
序号 BI指标 数据来源 计算方法 指标值权重 1 HQI 土地利用数据 InVEST软件 0.35 2 NPP TM与OLI CASA软件 0.25 3 EVI TM与OLI 遥感软件 0.15 4 SP 土地利用数据 Fragstats软件 0.1 5 SHDI 土地利用数据 Fragstats软件 0.15 表 3 研究区2000—2022年生态质量面积统计表
Table 3. Statistical table of ecological quality area in the study area from 2000 to 2022
时间 面积及占比 差 较差 中等 良 优 2000年 面积/km2 13.69 90.11 300.00 1420.59 748.72 占比/% 0.53 3.50 11.66 55.21 29.10 2005年 面积/km2 88.23 178.88 314.22 1076.60 915.16 占比/% 3.43 6.95 12.21 41.84 35.57 2010年 面积/km2 81.19 181.68 271.55 1194.07 844.61 占比/% 3.16 7.06 10.55 46.41 32.82 2015年 面积/km2 72.73 144.79 283.39 1194.70 877.48 占比/% 2.83 5.63 11.01 46.43 34.10 2022年 面积/km2 120.20 162.64 282.46 1104.15 903.64 占比/% 4.67 6.32 10.98 42.91 35.12 表 4 研究区各期生态因子解释力探测结果
Table 4. Results of ecological factor interpretation detection in the study area
生态因子 2000年 2005年 2010年 2015年 2022年 P值 q值 P值 q值 P值 q值 P值 q值 P值 q值 NDVI <0.001 0.874 <0.001 0.893 <0.001 0.910 <0.001 0.849 <0.001 0.908 WET <0.001 0.624 <0.001 0.587 <0.001 0.614 <0.001 0.576 <0.001 0.625 NDBSI <0.001 0.758 <0.001 0.852 <0.001 0.836 <0.001 0.847 <0.001 0.903 LST <0.001 0.378 <0.001 0.271 <0.001 0.187 <0.001 0.416 <0.001 0.355 BI <0.001 0.851 <0.001 0.863 <0.001 0.921 <0.001 0.857 <0.001 0.912 表 5 RSEI和IRSEI第一主成分(PC1)的百分比
Table 5. Percentages of the first principal component (PC1) derived from RSEI and IRSEI
方法 PC1值 2000年 2005年 2010年 2015年 2022年 RSEI 78.1% 80.34% 77.59% 79.2% 83.12% IRSEI 85.14% 86.84% 86.87% 89.1% 88.74% 表 6 生态质量为“差”的区域地质因素分析表
Table 6. Distribution of regions with poor ecological quality and their stratigraphic lithology
序号 区块 成因 地质环境条件 面积 1 研究区金沙江上段福田镇一带 煤矿开采 以含煤沉积岩为主 20.42 km2 2 研究区金沙江中段 城市扩张 各岩类均有覆盖,以变质岩占比最多 6.17 km2 铁矿开采 以岩浆岩和变质岩为主 30.00 km2 3 研究区金沙江下段 石漠化 以碳酸盐岩为主 32.03 km2 4 新九乡、益民乡、红格镇北部 煤矿开采 以含煤沉积岩为主 18.48 km2 -
[1] 陈博明,2020. 遥感技术在生态环境监测及执法中的应用进展[J]. 矿冶工程,40(4):165 − 168+173. doi: 10.3969/j.issn.0253-6099.2020.04.041
Chen B M,2020. Progress in the application of remote sensing technology to ecological environment monitoring and law enforcement supervision[J]. Mining Engineering,40(4):165 − 168+173 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-6099.2020.04.041
[2] 丁俊,倪师军,魏伦武,等,2005. 西南地区城市环境地质调查工作的思考[J]. 沉积与特提斯地质,25(4):108 − 110.
Ding J,Ni S J,Wei L W,et al.,2005. Thoughts on urban environmental geological survey in southwest China[J]. Sedimentary Geology and Tethyan Geology,25(4):108 − 110 (in Chinese with English abstract).
[3] 高鹏,徐志刚,陈绍杰,等,2017. 基于遥感生态指数的永定客家土楼遗产地生态评价[J]. 科技通报,33(10):58 − 63.
Gao P,Xu Z G,Chen S J,et al.,2017. Evaluation of land cover and ecological change of Yongding Hakka Tulou World Heritage Protection Area using remote sensing image[J]. Bulletin of Science and Technology,33(10):58 − 63 (in Chinese with English abstract).
[4] 高苇,2018. 环境规制下我国绿色矿业发展研究[D]. 中国地质大学.
Gao W,2018. Research on green mining development under the environmental regulation in China[D]. China University of Geosciences (in Chinese with English abstract).
[5] 何刚,杨静雯,鲍珂宇,等,2020. 新型城镇化对区域生态环境质量的空间相关性及效应分析[J]. 安全与环境学报,20(5):1958 − 1966.
He G,Yang J W,Bao K Y,et al.,2020. Analysis for the spatial correlation and the impact of the newly urbanized trend on the regional eco-environment quality[J]. Journal of Safety and Environment,20(5):1958 − 1966 (in Chinese with English abstract).
[6] 李晶瑜,叶红,张廷斌,等,2018. 近20年攀枝花煤矿集中区地表覆被变化及其环境影响浅析[J]. 测绘与空间地理信息,41(8):89 − 92+96+107.
Li J Y,Ye H,Zhang T B,et al.,2018. Land cover change and its environmental impact assessment in Panzhihua coal mine concentrated area from 1995 to 2016[J]. Geomatics & Spatial Information Technology,41(8):89 − 92+96+107 (in Chinese with English abstract).
[7] 李文杰,张时煌,2010. GIS和遥感技术在生态安全评价与生物多样性保护中的应用[J]. 生态学报,30(23):6674 − 6681.
Li W J,Zhang S H,2010. Research progress on GIS and remote sensing's application in ecological security assessment and biodiversity conservation[J]. Acta Ecologica Sinica,30(23):6674 − 6681 (in Chinese with English abstract).
[8] 李妍,张国钦,吝涛,等,2022. 乡镇遥感生态指数时空变化及影响因子研究——以天津市蓟州区为例[J]. 生态学报,42(2):474 − 486.
Li Y,Zhang G Q,Lin T,et al.,2022. The spatiotemporal changes of remote sensing ecological index in towns and the influencing factors:A case study of Jizhou District,Tianjin[J]. Acta Ecologica Sinica,42(2):474 − 486 (in Chinese with English abstract).
[9] 刘虎,姜岳,夏明宇,等,2021. 基于30年遥感监测的矿区生态环境变化——以南四湖周边矿区为例[J]. 金属矿山(4):197 − 206.
Liu H,Jiang Y,Xia M Y,et al.,2021. Ecological environment changes of mining area with 30 years' remote sensing monitoring:A case study around Nansihu Lake,Shandong Province[J]. Metal Mine(4):197 − 206 (in Chinese with English abstract).
[10] 刘少阳,白建军,陈军,2020. 面向县域尺度SDG 15.1. 2的生物多样性重要区域遥感识别和量化评估——以德清县为例[J]. 长江流域资源与环境,29(1):232 − 242.
Liu S Y,Bai J J,Chen J,2020. Identification and quantitative assessment of important sites for biodiversity based on remote sensing for SDG 15.1. 2 at county scale:A case study of Deqing County[J]. Resources and Environment in the Yangtze Basin,29(1):232 − 242 (in Chinese with English abstract).
[11] 刘洪,黄瀚霄,欧阳渊,等,2020. 基于地质建造的土壤地质调查及应用前景分析——以大凉山区西昌市为例[J]. 沉积与特提斯地质,40(1):91 − 105.
Liu H,Huang H X,Ouyang Y,et al.,2020. Soil's geologic investigation in Daliangshan,Xichang,Sichuan[J]. Sedimentary Geology and Tethys Geology,40(1):91 − 105 (in Chinese with English abstract).
[12] 罗健,苗如霖,罗小平,等,2022. 攀枝花西区地下水和地热分布特征及成因分析[J]. 矿物岩石, 42(4):128 − 140.
Luo J,Miao R L,Luo X P,et al.,2022. Distribution characteristics and genesis of groundwater and geothermal resources in west district of Panzhihua City[J]. Mineralogy and Petrology,42(4):128 − 140 (in Chinese with English abstract).
[13] 罗镕基,王宏涛,王成,2023. 基于改进遥感生态指数的甘肃省古浪县生态质量评价[J]. 干旱区地理,46(4):539 − 549.
Luo R J,Wang H T,Wang C,2023. Ecological quality evaluation of Gulang County in Gansu Province based on improved remote sensing ecological index[J]. Arid Land Geography,46(4):539 − 549 (in Chinese with English abstract).
[14] 秦璐,陈炳乾,于洋,等,2023. 基于遥感生态指数的矿井关闭前后生态环境时空变化规律研究[J]. 金属矿山(3):242 − 249.
Qin L,Chen B Q,Yu Y,et al.,2023. Study on the spatiotemporal variation regularity of ecological environment before and after mine closure based on remote sensing ecological index[J]. Metal Mine(3):242 − 249 (in Chinese with English abstract).
[15] 宋挺,段峥,刘军志,等,2015. Landsat 8数据地表温度反演算法对比[J]. 遥感学报,19(3):451 − 464.
Song T,Duan Z,Liu J Z,et al.,2015. Comparison of four algorithms to retrieve land surface temperature using Landsat 8 satellite[J]. National Remote Sensing Bulletin,19(3):451 − 464 (in Chinese with English abstract).
[16] 覃志豪,李文娟,徐斌,等,2004. 陆地卫星TM6波段范围内地表比辐射率的估计[J]. 国土资源遥感,16(3):28 − 32.
Qin Z H,Li W J,Xu B,et al.,2004. The estimation of land surface emissivity for landsat TM6[J]. Remote Sensing for Land & Resources,16(3):28 − 32 (in Chinese with English abstract).
[17] 唐子晴, 2022. 攀枝花擂响招商引资“进军鼓”[N]. 四川日报, 2022-07-15(008).
Tang Z Q,2022. Panzhihua rings the “marching drum” for attracting investment and investment[N]. Sichuan Daily,2022-07-15(008).
[18] 王劲峰,徐成东,2017. 地理探测器:原理与展望[J]. 地理学报,72(1):116 − 134.
Wang J F,Xu C D,2017. Geodetector:Principle and prospective[J]. Acta Geographica Sinica,72(1):116 − 134 (in Chinese with English abstract).
[19] 王子正,范文玉,高建华,等,2012. 攀西铁矿成矿带地质矿产特征及找矿方向[J]. 沉积与特提斯地质,32(1):97 − 105. doi: 10.11821/dlxb201701010
Wang Z Z,Fan W Y,Gao J H,et al.,2012. Geology and exploration of the iron metallogenic belts in the Panzhihua Xichang zone,southwestern Sichuan[J]. Sedimentary Geology and Tethyan Geology,32(1):97 − 105 (in Chinese with English abstract). doi: 10.11821/dlxb201701010
[20] 吴映曈,刘春晖,赵婷婷,2020. 习近平生态文明视阈下基于RSEI技术的伊敏矿区生态环境质量研究[J]. 北方园艺(13):91 − 98.
Wu Y T,Liu C H,Zhao T T,2020. Research on ecological environment quality of yimin mining area based on RSEI technology from the perspective of Xi Jinping′s thought of ecological civilization[J]. Northern Horticulture(13):91 − 98 (in Chinese with English abstract).
[21] 谢余初,巩杰,张素欣,等,2018. 基于遥感和InVEST模型的白龙江流域景观生物多样性时空格局研究[J]. 地理科学,38(6):979 − 986.
Xie Y C,Gong J,Zhang S X,et al.,2018. Spatiotemporal change of landscape biodiversity based on InVEST model and remote sensing technology in the Bailong River Watershed[J]. Scientia Geographica Sinica,38(6):979 − 986 (in Chinese with English abstract).
[22] 徐涵秋,2013. 区域生态环境变化的遥感评价指数[J]. 中国环境科学,33(5):889 − 897.
Xu H Q,2013. A remote sensing index for assessment of regional ecological changes[J]. China Environmental Science,33(5):889 − 897 (in Chinese with English abstract).
[23] 杨海军,李营,洪运富,等,2015. 县域尺度生物多样遥感监测与评价研究[J]. 遥感技术与应用,30(6):1138 − 1145. doi: 10.3969/j.issn.1000-6923.2013.05.019
Yang H J,Li Y,Hong Y F,et al.,2015. Biodiversity monitoring and assessment using remote sensing technology at county's scale[J]. Remote Sensing Technology and Application,30(6):1138 − 1145 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6923.2013.05.019
[24] 张斌,2023. 东北虎豹生存区域生物多样性与生境适宜性遥感评价[D]. 长春:吉林大学.
Zhang B,2023. Evaluation for biodiversity and habitat suitability based on remote sensing at the living area of amur tiger and amur leopard[D]. Changchun:Jilin University (in Chinese with English abstract).
[25] 张景华,张建龙,欧阳渊,等,2024. 基于形成机理的石漠化敏感性评价:以贵州省黔西县为例[J]. 沉积与特提斯地质,44(1):162 − 171.
Zhang J H,Zhang J L,Ouyang Y,et al.,2024. Sensitivity evaluation of Karst rock desertification based on its formation mechanism:A case study of Qianxi County in Guizhou Province[J]. Sedimentary Geology and Tethyan Geology,44(1):162 − 171 (in Chinese with English abstract).
[26] 赵银兵,倪忠云,欧阳渊,等,2022. 生态地质环境承载力研究进展[J]. 沉积与特提斯地质,42(4):529 − 541.
Zhao Y B,Ni Z Y,Ouyang Y,et al.,2022. Research progress of eco-geological environment carrying capacity[J]. Sedimentary Geology and Tethyan Geology,42(4):529 − 541 (in Chinese with English abstract).
[27] 赵银兵, 倪忠云, 欧阳渊, 等, 2022. 生态地质环境承载力研究进展[J]. 沉积与特提斯地质, 42(4): 529 − 541.
Zhou C L,Yang W N,Shao H Y,2008. Dynamic monitoring of mining land use using remote sensing:A case study of Panzhihua iron mine area[J]. Science and Technology Innovation Herald(6):24+26.
[28] 唐子晴,2022. 攀枝花擂响招商引资“进军鼓”[N]. 四川日报,2022-07-15(008).
[29] 周春兰,杨武年,邵怀勇,2008. 矿山土地利用遥感动态监测—以攀枝花铁矿区为例[J]. 科技创新导报(6):24+26.
Zhou C L, Yang W N, Shao H Y, 2008. Dynamic monitoring of mining land use using remote sensing: A case study of Panzhihua iron mine area[J]. Science and Technology Innovation Herald(6): 24+26.
-