Characteristics and prospecting potential of the granitoid weathering crust-type Zhonglinggang niobium deposit, Jinping County of Yunnan Province
-
摘要:
铌是我国重要的战略性紧缺矿产资源之一。近年来,云南省地质调查院开展的矿产勘查工作中发现滇南地区碱性花岗岩体风化壳型铌矿体,铌矿勘查有望取得突破。本文基于滇南中岭岗花岗岩风化壳型铌矿床的详细野外地质勘查,梳理矿体特征,开展岩石地球化学和矿相学研究。研究表明,中岭岗花岗岩SiO2含量为71.74%~74.17%,平均值为72.95%;全碱(Na2O+K2O)含量为8.82%~10.13%,平均值为9.45%;Na2O/K2O比值为0.69~0.91,平均值为0.82;Nb含量为112×10-6~170×10-6,Ta含量为
5.2710 -6~9.27×10-6,Nb/Ta比值为14.99~22.39;富集Nb、Ta、Th等高场强元素和Rb大离子亲石元素,亏损Ba、Sr、Ti等元素,显示本区花岗岩具有壳幔混源的地球化学特征。铌矿主要形成于碱性花岗质岩浆结晶分异演化和后期的风化堆积,矿体为富铌花岗岩体风化后形成的花岗岩风化壳型铌矿床,而载铌矿物主要是烧绿石。基于这一理论认识,结合区域矿产调查及对比研究,认为云南省金平县马鞍底乡—大寨乡一带仍具有较好的铌多金属矿找矿潜力。Abstract:Niobium is one of the most important strategic scarce mineral resources in our country. In recent years, the Yunnan Institute of Geological Survey has discovered alkaline granitoid weathering crust-type niobium orebodies during mineral exploration, which is expected to lead to a breakthrough in niobium ore exploration in the future. In this paper, systematic geochemical studies have been conducted on granitic bodies, and detailed field geological exploration and indoor microscopic studies have been carried out to investigate the characteristics of orebodies and ore mineral compositions. The results show that the SiO2 contents of these granitoids average 72.95%; the Na2O+K2O values range from 8.82% to 10.13%, averaging 9.45%; the Na2O/K2O ratios are between 0.69 and 0.91, averaging 0.82, with the contents of Nb ranging from 112×10-6 to 170×10-6, Ta from 5.27×10-6 to 9.27×10-6, and Nb/Ta ratios ranging from 14.99 to 22.39. The granitoids are enriched in high field strength elements (HFSEs) such as Nb, Ta, and Th, as well as large ion lithophile elements (LILEs) like Rb, while depleted in Ba, Sr, and Ti. The formation of niobium ore is primarily attributed to the fractional crystallization of alkaline granitoid magma and following weathering. While the gneissic granitoid weathering crust-type niobium deposit was formed after the weathering of niobium-rich granitoids. The niobium-bearing pyrochlore is an important component for the formation of high-grade niobium orebodies. Based on regional mineral resource survey and comparative studies, this paper proposes that there is still great prospecting potential for revealing niobium polymetallic orebodies in the area from Maandi to Dazhai towns in Jinping County.
-
-
图 1 中美两国战略性矿产对外依存度对比图(据Gulley,2018;李文昌等,2022)
Figure 1.
表 1 岩石地球化学全分析结果表
Table 1. Major and trace element geochemical analysis results of the bulk rock
样品编号 元 素 含 量(×10-2) SiO2 K2O Na2O CaO MgO MnO Al2O3 Fe2O3 FeO TiO2 P2O5 G0ZK01YQ1 73.6 5.22 3.6 0.21 0.06 0.12 11.11 3.02 1.54 0.35 0.02 G0ZK08YQ1 71.74 5.31 4.82 0.65 0.08 0.15 11.89 3.04 1.94 0.39 0.04 S0ZK01YQ1 72.3 5.25 4.52 0.47 0.05 0.14 11.24 2.92 2.52 0.34 0.03 S0ZK01YQ2 74.17 4.95 4.13 0.37 0.08 0.11 10.1 4.42 0.99 0.28 0.03 样品编号 元 素 含 量(×10-2) 元 素 含 量(×10-6) Nb2O5 H2O− H2O+ Pb Zn Au Ba Co Cr Cu Ga G0ZK01YQ1 0.008 0.45 0.64 1.51 0.62 <0.05 316 1.59 16.6 49.5 29.8 G0ZK08YQ1 0.012 0.12 0.11 0.56 0.25 <0.05 107 1.6 16.6 20.6 31.6 S0ZK01YQ1 0.01 0.08 0.15 0.34 0.16 <0.05 62.1 1.62 15.1 16.8 32.2 S0ZK01YQ2 0.016 0.1 0.13 0.4 0.21 <0.05 506 3.38 16.6 19.2 29.1 样品编号 元 素 含 量(×10-6) Li Nb Ni Rb Sc Sr Th Ta U V Zr G0ZK01YQ1 16.6 170 4.45 130 3.16 23 22.2 9.27 4.42 46.2 900 G0ZK08YQ1 17.2 112 4.58 137 3.07 20.9 14.3 7.47 2.06 44.8 452 S0ZK01YQ1 16.5 118 4.57 114 3.67 19.3 14.3 5.27 1.95 42.6 481 S0ZK01YQ2 43.6 129 6.3 142 6.07 54.3 15.3 7.32 1.63 46.3 631 样品编号 元 素 含 量(×10-6) Ce Dy Er Eu Gd Ho La Lu Nd Pr Sm G0ZK01YQ1 408.3 10.59 5.11 0.619 14.12 1.842 61.17 0.78 80.41 22.34 15.83 G0ZK08YQ1 839.9 11.33 6.778 0.506 15.62 2.199 43.1 1.167 55.17 15.95 11.57 S0ZK01YQ1 545.9 68.75 37.1 2.643 61.59 13.34 241.6 4.451 255.3 63.45 58.84 S0ZK01YQ2 441 29.5 17.4 1.28 30.8 5.94 186 2.38 176 49.5 31.5 样品编号 元 素 含 量(×10-6) 元素含量(×10-9) Tb Tm Y Yb Hf Pt Pd G0ZK01YQ1 1.986 0.733 17.61 4.876 48.3 3.16 3.58 G0ZK08YQ1 1.934 1.093 30.55 7.79 24.4 3.33 4.49 S0ZK01YQ1 11.3 4.997 315.2 30.5 22.2 5.62 5.47 S0ZK01YQ2 4.92 2.42 138 15.1 34.5 7.76 8.82 样品编号 其 他 参 数 ΣREE ΣCe ΣY ΣCe/ΣY A/NCK K2O/Na2O A/NK Rb/Sr (La/Sm)N (Gd/Yb)N (La/Yb)N G0ZK01YQ1 646.32 588.67 57.65 10.21 0.93 1.45 0.96 5.65 2.43 2.34 8.46 G0ZK08YQ1 1044.66 966.20 78.46 12.31 0.80 1.10 0.87 6.56 2.34 1.62 3.73 S0ZK01YQ1 1714.96 1167.7 547.23 2.13 0.80 1.16 0.86 5.91 2.58 1.63 5.34 S0ZK01YQ2 1131.74 885.28 246.46 3.59 0.79 1.20 0.83 2.62 3.71 1.65 8.30 -
[1] Abdalla H M,Helba H A,Hohamed,F H,1998. Chemistry of columbite tantalite minerals in rare metal granitoids,Eastern Desert,Egypt[J]. Mineralogical Magazine,62(6):821 − 836. doi: 10.1180/002646198548197
[2] 陈金勇,范洪海,王生云,等,2019. 内蒙古扎鲁特旗巴尔哲超大型矿床控矿因素分析[J]. 地质力学学报,25(1):27 − 35.
Chen J Y,Fan H H,Wang S Y,et al.,2019. Ore-controlling Factors of the BaerZhe super-large deposit in Jarud Banner,inner Mongolia[J]. Journal of Geomechanics,25(1):27 − 35 (in Chinese with English abstract).
[3] 崔银亮,2007. 云南省金平县龙脖河铜矿火山成矿作用及综合信息成矿预测[D]. 昆明理工大学:1 − 362.
Cui Y L,2007. The synthetic informational prognosis of metallogenic prospecting and volcanic mineralization of Longbohe copper deposit in Jinping County of Yunnan Province [D]. Kunming University of Science and Technology:1 − 362 (in Chinese with English abstract).
[4] 邓攀,陈玉明,叶锦华,等,2019. 全球铌钽资源分布概况及产业发展形势分析[J]. 中国矿业,28(4):63 − 68. doi: 10.12075/j.issn.1004-4051.2019.04.029
Deng P,Chen Y M,Ye J H,et al.,2019. Study on the resource distribution and industry development of global niobium and tantalum[J]. China Mining Magazine,28(4):63 − 68 (in Chinese with English abstract). doi: 10.12075/j.issn.1004-4051.2019.04.029
[5] Frost C D,2011. On ferroan (A-type) granitoids:Their compositional variability and modes of origin[J]. Journal of Petrology,52(1):39 − 53. doi: 10.1093/petrology/egq070
[6] Gulleyal A L,Nassar N T,Xun S,et al.,2018. China,the United States,and competition for resources that enable emerging technologies[J]. Proceedings of the National Academy of Sciences,115(16):4111 − 4115. doi: 10.1073/pnas.1717152115
[7] 侯增谦,陈骏,翟明国,2020. 战略性关键矿产研究现状与科学前沿[J]. 科学通报,65(33):3651 − 3652.
Hou Z Q,Chen J,Zhai M G,2020. Current status and frontiers of research on critical mineral resources[J]. Chinese Science Bulletin,65(33):3651 − 3652 (in Chinese with English abstract).
[8] 黄亮,周家喜,孙载波,等,2022. 滇西漕涧地区发现流纹岩型铌矿化[J]. 矿物岩石地球化学通报,41(1):185 − 187.
Huang L,Zhou J X,Sun Z B,et al.,2022. Rhyolite-type niobium mineralization discovered in the Caojian area of western Yunnan.[J]. Bulletin of Mineralogy,Petrology and Geochemistry,41(1):185 − 187 (in Chinese with English abstract).
[9] 李建康,李鹏,王登红,等,2019. 中国铌钽矿成矿规律[J]. 科学通报,64:1545 − 1566. doi: 10.1360/N972018-00933
Li J K,Li P,Wang D H,et al.,2019. A review of niobium and tantalum metallogenic regularity in China[J]. Chinese Science Bulletin,64:1545 − 1566 (in Chinese with English abstract). doi: 10.1360/N972018-00933
[10] 李文昌,潘桂棠,侯增谦,等,2010. 西南“三江”多岛弧盆−碰撞造山成矿理论与勘查技术[M]. 北京:地质出版社:273 − 274.
Li W C,Pan G T,Hong Z Q,et al.,2010. Mineralization theory and exploration technology of the multi-island arc basin-collision orogeny in the “Three Rivers” of Southwest China[M]. Beijing,Geological Bulletin of China:273 − 274 (in Chinese with English abstract).
[11] 李文昌,李建威,谢桂青,等,2022. 中国关键矿产现状、研究内容与资源战略分析[J]. 地学前缘,29(1):1 − 13.
Li W C,Li J W,Xie G G,et al.,2022. Critical minerals in China:Current status,research focus and resource strategic analysis[J]. Earth Science Frontiers,29(1):1 − 13 (in Chinese with English abstract).
[12] Li W H,Li Z Y,Zheng X,2014. Characterization of weathered crustal phosphorus-iron niobium-rare earth deposits in carbonate rocks,Sukuru,Uganda.[J]. Mineral Deposits,33:1113 − 1115.
[13] 李文辉,李宗勇,郑旭,2014. 乌干达苏库卢碳酸岩风化壳型磷铁铌稀土矿床特征[J]. 矿床地质,33:1113 − 1115.
Li W H,Li Z Y,Zheng X,2014. Sukulu carbonatite weathering crust type phosphate-iron-niobium rare earth deposit,Uganda[J]. Mineral Deposits,33:1113 − 1115 (in Chinese with English abstract).
[14] 李雪,2023. 大兴安岭中南段燕山期铌钽稀有元素成矿作用研究[D]. 吉林大学:1 − 294.
Li X,2023. Study on the mineralization of Yanshanian Nb-Ta rare elements in the middle-south Great Xing'an Range[D]. Jilin University:1 − 294 (in Chinese with English abstract).
[15] Middlemost EAK,1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,37(3 − 4):215 − 224.
[16] 饶灿,王吴梦雨,王琪,等,2023. NYF型伟晶岩岩浆热液演化与稀有稀土金属超常富集[J]. 地学前缘,30(5):106 − 114.
Rao C,Wang M Y,Wang Q,et al.,2023. Overview of magmatic-hydrothermal evolution of and rare element super enrichment in NYF pegmatites[J]. Earth Science Frontiers,30(5):106 − 114 (in Chinese with English abstract).
[17] 任治机,1989. 云南陆壳的演化及其成矿的关系[J]. 矿产与地质,5(1):10 − 17.
Ren Z J,1989. The evolution of Yunnan continental crust and its relationship with mineralization[J]. Mineral and Geology,5(1):10 − 17 (in Chinese with English abstract).
[18] 施俊法,唐金荣,周平,等,2010. 世界找矿模型与矿产勘查[M]. 地质出版社:1 − 232.
Shi J F,Tang J R,Zhou P,et al.,2010. World prospecting model and mineral exploration[M]. Beijing:Geological Bulletin of China:1 − 232 (in Chinese with English abstract).
[19] Turner S P,Foden J D,Morrison R S,1992. Derivation of some A-type magmas by fractionation of basaltic magma:An example from the Padthaway ridge,South Australia[J]. Lithos,28:151 − 179. doi: 10.1016/0024-4937(92)90029-X
[20] 万泰安,2022. 江西宜春 414 矿床钽铌富集机理:来自云母类矿物化学研究的启示[D]. 东华理工大学:1 − 69.
Wan T A,2022. The Ta and Nb enrichment mechanism of the Yichun 414 deposi Jiangxi Province:A case study on the mineral characteristics of micas[D]. East China University of Technology:1 − 69 (in Chinese with English abstract).
[21] 王强,李五福,王秉璋,等,2024. 与碱性岩−碳酸岩杂岩共生的铌− 稀土成矿作用—兼论东昆仑大格勒铌−稀土矿床中的碱性岩−碳酸岩杂岩成因[J]. 大地构造与成矿学,48(1):1 − 37.
Wang Q,Li W F,Wang B Z,et al.,2024. Niobium-rare earth mineralization associated with alkaline rock-carbonate complex:Genesis of alkaline rock-carbonate complex in the Dagele Niobium-rare earth deposit,East Kunlun[J]. Geotectonics and metallogenesis,48(1):1 − 37 (in Chinese with English abstract).
[22] 王汝成,车旭东,邬斌,等,2020. 中国铌钽锆铪资源[J]. 科学通报,65(33):3763 − 3777. doi: 10.1360/TB-2020-0271
Wang R C,Che X D,Wu B,et al.,2020. Critical mineral resources of Nb,Ta,Zr,and Hf in China[J]. Chinese Science Bulletin,65(33):3763 − 3777 (in Chinese with English abstract). doi: 10.1360/TB-2020-0271
[23] 文俊,刘治成,竹合林,等,2021. 川南沐川地区上二叠统宣威组底部Nb-REE超常富集特征及其地质意义[J]. 矿床地质,40(5):1045 − 1071.
Wen J,Liu Z C,Zhu H L,et al.,2021. Characteristics and geological significance of abnormal enrichment of Nb-REE in bottom of Uper Permian Xuanwei Formation in Muchuan area,southern Sichuan[J]. Ore Geology Reviews,40(5):1045 − 1071 (in Chinese with English abstract).
[24] Wu F Y,Sun D Y,Li H M,et al.,2002. A-type granites in northeastern China:Age and geochemical constraints on their petrogenesis[J]. Chemical Geology,187(1 − 2):143 − 173. doi: 10.1016/S0009-2541(02)00018-9
[25] Yang J H,Wu F Y,Chung S L,et al.,2006. A hybrid origin for the Qianshan A-type granite,northeast China:geochemical and Sr-Nd-Hf isotopic evidence[J]. Lithos,89:89 − 106. doi: 10.1016/j.lithos.2005.10.002
[26] 杨武斌,单强,赵振华,等,2011. 巴尔哲地区碱性花岗岩的成岩和成矿作用:矿化和未矿化岩体的比较[J]. 吉林大学学报:地球科学版,41(6):1689 − 1704.
Yang W B,Shan Q,Zhao Z H,et al.,2011. Petrogenic and metallogenic action of the alkaline granitoids in Baerzhe area:A comparison between mineralized and barren plutons[J]. Journal of Jilin University (Earth Science Edition),41(6):1689 − 1704 (in Chinese with English abstract).
[27] 翟明国,吴福元,胡瑞忠,等,2019. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金,33(2):106 − 111.
Zhai M G,Wu F Y,Hu R Z,et al.,2019. Critical metal mineral resources:Current research status and scientific issues[J]. Science Foundation in China,33(2):106 − 111 (in Chinese with English abstract).
[28] Zhang L,Wu K X,Chen L K,et al.,2015. Overview of mineralization characteristics of ion adsorption rare earth deposits in Gannan,China[J]. Chinese Journal of Rare Earths,33(1):10 − 17.
[29] Zhang Z H,1990. A Study on weathering crust ion adsorption type REE deposits,south China[J]. Contributions to Geology and Mineral Resources Research,1(5):57 − 71.
[30] Zhao J L,Qiu J S,Liu L,et al.,2016. The Late Cretaceous I- and A-type granite association of southeast China:Implications for the origin and evolution of post collisional extensional magmatism[J]. Lithos,240:16 − 33.
[31] 中国地质科学院矿产资源研究所,2019. 云南矿产地质[M]. 北京:地质出版社:241 − 247.
Mineral Resource Institute of China Academy of Geological Sciences,2019. Mineral geology of Yunnan[M]. Beijing:Geological Publishing House:241 − 247 (in Chinese with English abstract).
-