塔里木盆地塔河地区上寒武统下丘里塔格组白云岩储层的热液改造效应

尚凯, 徐勤琪, 叶宁, 耿锋, 刘明铭. 2025. 塔里木盆地塔河地区上寒武统下丘里塔格组白云岩储层的热液改造效应. 沉积与特提斯地质, 45(2): 268-281. doi: 10.19826/j.cnki.1009-3850.2024.10005
引用本文: 尚凯, 徐勤琪, 叶宁, 耿锋, 刘明铭. 2025. 塔里木盆地塔河地区上寒武统下丘里塔格组白云岩储层的热液改造效应. 沉积与特提斯地质, 45(2): 268-281. doi: 10.19826/j.cnki.1009-3850.2024.10005
SHANG Kai, XU Qinqi, YE Ning, GENG Feng, LIU Mingming. 2025. Hydrothermal transformation of the Lower Qiulitage Formation dolomite reservoirs in the Upper Cambrian, Tahe area, Tarim Basin. Sedimentary Geology and Tethyan Geology, 45(2): 268-281. doi: 10.19826/j.cnki.1009-3850.2024.10005
Citation: SHANG Kai, XU Qinqi, YE Ning, GENG Feng, LIU Mingming. 2025. Hydrothermal transformation of the Lower Qiulitage Formation dolomite reservoirs in the Upper Cambrian, Tahe area, Tarim Basin. Sedimentary Geology and Tethyan Geology, 45(2): 268-281. doi: 10.19826/j.cnki.1009-3850.2024.10005

塔里木盆地塔河地区上寒武统下丘里塔格组白云岩储层的热液改造效应

  • 基金项目: 中石化科研项目塔北−塔中震旦−寒武系成藏条件与区带优选(P22123)
详细信息
    作者简介: 尚凯(1982—),博士,副研究员,从事沉积学与储层地质研究。E-mail:shangk.xbsj@sinopec.com
    通讯作者: 叶宁(1987—),博士,助理研究员,从事储层地质与储层地球化学研究和教学。E-mail:yn870104@foxmail.com
  • 中图分类号: P618.13

Hydrothermal transformation of the Lower Qiulitage Formation dolomite reservoirs in the Upper Cambrian, Tahe area, Tarim Basin

More Information
  • 热液白云岩化作用对储层的形成和演化起着重要作用。本研究在岩心观察和薄片鉴定的基础上,建立塔河地区下丘里塔格组白云岩的分类方案,结合不同类型白云岩的元素地球化学和碳、氧、锶同位素地球化学分析,研究不同类型白云岩的成因机制,探讨热液作用对储集空间的影响。结果表明:(1)塔河地区下丘里塔格组发育两类基质白云岩和两期白云石充填物,包括:平直晶面他形—半自形,粉—细晶白云岩(D1)、平直半自形—非平直晶面他形,中—粗晶白云岩(D2),以及鞍形白云石充填物(SD),其中SD-1为鞍形白云石的内核、发暗红色阴极光,SD-2为鞍形白云石边缘部分、发亮红色阴极光;(2)D1白云岩可能为浅埋藏白云岩化作用的产物,而D2白云岩可能形成于埋藏成岩阶段的重结晶作用;(3)溶蚀缝洞中充填的鞍形白云石主体部分(SD-1)形成于埋藏条件下的自调节白云石化作用,并在后期遭受了热液改造,从而形成鞍形白云石的边缘环带SD-2;(4)热液流体对围岩的改造作用可能较为微弱,主要集中在缝洞体系中。

  • 加载中
  • 图 1  a. 塔里木盆地构造单元划分;b. 塔里木盆地北部构造单元;c. 塔里木盆地台地相区寒武系地层划分综合柱状图(据易士威等,2022刘永立等,2022杜德道等,2023修改)

    Figure 1. 

    图 2  塔河地区下丘里塔格组白云岩取心段柱状图

    Figure 2. 

    图 3  塔河地区下丘里塔格组白云岩及充填物的岩石学特征

    Figure 3. 

    图 4  塔河地区下丘里塔格组碳酸盐矿物的δ18O VPDBδ13C VPDB交会图

    Figure 4. 

    图 5  塔河地区下丘里塔格组碳酸盐矿物的87Sr/86Sr比值分布图

    Figure 5. 

    图 6  塔河地区下丘里塔格组白云石与方解石原位稀土元素配型

    Figure 6. 

    图 7  各类碳酸盐矿物Fe、Mn、Sr和∑REE含量交会图

    Figure 7. 

    表 1  塔河地区下丘里塔格组白云岩与缝洞充填白云石、方解石的C-O-Sr同位素数据

    Table 1.  C-O-Sr isotope compositions of dolostones and carbonate cements in the Lower Qiulitage Formation, Tahe area

    样品编号 井号与深度 类型 δ13CVPDB/‰ δ18O VPDB/‰ 87Sr/86Sr
    A-1 A井6904.1 m D1 -1.9 -9.0 0.70922
    A-3 A井6904.7 m D1 -1.6 -8.2 0.70921
    / *B井7315.2 m D1 -1.3 -9.7 0.70934
    / *B井7313.4 m D1 -1.2 -8.2 0.70911
    / *B井7119.2 m D1 -0.4 -9.9 0.70930
    / *B井7115.8 m D2 -0.7 -12.2 0.70908
    A-3 A井6797.1 m D2 -1.3 -8.3 0.70910
    A-5 A井6905.4 m D2 -2.1 -10.0 0.70936
    / #A井6905.3 m SD -0.2 -6.8 0.70924
    A-2 #A井6797.8 m SD -1.7 -11.0 0.70996
    / #A井6744.0 m SD -1.3 -9.3 0.70966
    / #A井6797.1 m SD -1.4 -9.2 0.70889
    / #A井6905.4 m SD -1.8 -7.9 0.70941
    / *B井7119.2 m Cal -2.4 -13.1 0.70884
    / *B井7117.1 m Cal -2.7 -11.8 0.70879
    / *B井7116.8 m Cal -2.3 -13.4 0.70921
    / #A井6904.9 m Cal -3.0 -11.4 0.70914
    / #A井6904.9 m Cal -1.3 -11.8 0.70919
     注:D1为粉—细晶白云岩、D2为中—粗晶白云岩、SD为鞍形白云石、Cal为方解石,带*的数据来源于Guo et al.,2016,带#号的数据来源于Du et al.,2018
    下载: 导出CSV
  • [1]

    白璇,钟怡江,黄可可,等,2022. 白云石重结晶作用及其地质意义[J]. 岩石矿物学杂志,41(4):804 − 817. doi: 10.3969/j.issn.1000-6524.2022.04.009

    Bai X,Zhong Y J,Huang K K,et al.,2022. Recrystallization of dolomite and its geological significance[J]. Acta Petrologica et Mineralogica,41(4):804 − 817 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2022.04.009

    [2]

    Banner J,Hanson G,Meyers W,1988. Rare earth element and Nd isotopic variations in regionally extensive dolomites from the Burlington-Keokuk Formation (Mississippian):Implications for REE mobility during carbonate diagenesis[J]. Journal of Sedimentary Petroleum,58(3):415 − 432.

    [3]

    Bau M,1991. Rare-earth element mobility during hydrothermal and metamorphic fuid-rock interaction and the signifcance of the oxidation state of europium[J]. Chemical Geology,93(3 − 4):219 − 230. doi: 10.1016/0009-2541(91)90115-8

    [4]

    Bau M,Balan S,Schmidt K,et al.,2010. Rare earth elements in mussel shells of the Mytilidae family as tracers for hidden and fossil high-temperature hydrothermal systems[J]. Earth and Planetary Science Letters,299(3 − 4):310 − 316. doi: 10.1016/j.jpgl.2010.09.011

    [5]

    Bjørlykke K,Jahren J,2012. Open or closed geochemical systems during diagenesis in sedimentary basins:Constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs[J]. AAPG Bulletin,96(12):2193 − 2214. doi: 10.1306/04301211139

    [6]

    Davies G R,Smith L B,2006. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin,90(11):1641 − 1690. doi: 10.1306/05220605164

    [7]

    丁文龙,林畅松,漆立新,等,2008. 塔里木盆地巴楚隆起构造格架及形成演化[J]. 地学前缘,15(2):242 − 252. doi: 10.3321/j.issn:1005-2321.2008.02.027

    Ding W L,Lin C S,Qi L X,et al.,2008. Structural framework and evolution of Bachu Uplift in Tarim Basin[J]. Earth Science Frontiers,15(2):242 − 252 (in Chinese with English abstract). doi: 10.3321/j.issn:1005-2321.2008.02.027

    [8]

    杜德道,李洪辉,闫磊,等,. 2023. 塔里木盆地构造变形迁移与三大地质事件的关系及其地质意义[J]. 地质科学 ,58(2):379 − 397.

    Du D D,Li H H,Yan L,et al.,2023. Deformation migration and three major geological events in Tarim Basin and their geological significance[J]. Chinese Journal of Geology,58(2):379 − 397 (in Chinese with English abstract).

    [9]

    Du Y,Fan T L,Machel H G,et al.,2018. Genesis of Upper Cambrian-Lower Ordovician dolomites in the Tahe Oilfield,Tarim Basin,NW China:Several limitations from petrology,geochemistry,and fluid inclusions[J]. Marine and Petroleum Geology,91:43 − 70. doi: 10.1016/j.marpetgeo.2017.12.023

    [10]

    Ehrenberg S N,Walderhaug O,Bjorlykke K,2012. Carbonate porosity creation by mesogenetic dissolution:Reality or illusion[J]. AAPG Bulletin,96(2):217 − 233.

    [11]

    Ehrenberg S N,Bjrlykke K ,2016. Comments regarding hydrothermal dolomitization and porosity development in the paper "Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin,northwestern China" by Zhu et al. (2015)[J]. Marine and Petroleum Geology,76(5):480 − 481.

    [12]

    Ehrenberg S N,Nadeau P H ,2005. Sandstone vs. carbonate petroleum reservoirs:A global perspective on porosity-depth and porosity-permeability relationships[J]. AAPG Bulletin,89(4):435 − 445. doi: 10.1306/11230404071

    [13]

    耿锋,苏炳睿,郝建龙,等,2023. 塔里木盆地巴楚–麦盖提地区寒武纪沉积序列与古地理演化[J]. 沉积与特提斯地质,43(4):856 − 870.

    Geng F,Su B R,Hao J L,et al.,2023. The Cambrian sedimentary sequences and paleogeographic evolution in the Bachu-Maigaiti area,southwestern Tarim Basin[J]. Sedimentary Geology and Tethyan Geology,43(4):856 − 870(in Chinese with English abstract).

    [14]

    Gregg J M,Shelton K L,1990. Dolomitization and dolomite neomorphism in the back reef facies of the Bonneterre and Davies Formations (Cambrian),southeastern Missouri[J]. Journal of Sedimentary Petrology,60(4):549 − 562.

    [15]

    Gregg J M,Sibley D F,1984. Epigenetic dolomitization and the origin of xenotopic dolomite texture[J]. Journal of Sedimentary Petrology,54(3):908 − 931.

    [16]

    Guo C,Chen D Z,Qing H R,et al.,2016. Multiple dolomitization and later hydrothermal alteration on the Upper Cambrian-Lower Ordovician carbonates in the northern Tarim Basin,China[J]. Marine and Petroleum Geology,72:295 − 316. doi: 10.1016/j.marpetgeo.2016.01.023

    [17]

    郭旭升,胡宗全,李双建,等,2023. 深层—超深层天然气勘探研究进展与展望[J]. 石油科学通报,8(4):461 − 474.

    Guo X S,Hu Z Q,Li S J,et al.,2023. Progress and prospect of natural gas exploration and research in deep and ultra-deep strata[J]. Petroleum Science Bulletin,8(4):461 − 474 (in Chinese with English abstract).

    [18]

    何松林,张小兵,宋猛飞,2020. 塔里木盆地塔北地区中−下奥陶统顶面多期剥蚀过程与油气关系[J]. 地质科学,55(3):829 − 851. doi: 10.12017/dzkx.2020.051

    He S L,Zhang X B,Song M F,2020. Ordovician top surface and its relationship with oil and gas in the Tabei area,Tarim Basin[J]. Chinese Journal of Geology(Scientia Geologica Sinica),55(3):829 − 851(in Chinese with English abstract). doi: 10.12017/dzkx.2020.051

    [19]

    何治亮,金晓辉,沃玉进,等,2016. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探,21(1):3 − 14.

    He Z L,Jin X H,Wo Y J,et al.,2016. Hydrocarbon accumulation characteristics and exploration domains of ultra-deep marine carbonates in China[J]. China Petroleum Exploration,21(1):3 − 14(in Chinese with English abstract).

    [20]

    贾承造, 1997. 中国塔里木盆地构造特征与油气[M]. 北京: 石油工业出版社.

    Jia C Z,1997. Tectonic characteristics and oil & gas of Tarim Basin,China[M]. Beijing:Petroleum Industry Press.

    [21]

    贾承造,2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报:自然科学版,47(5):1 − 12.

    Jia C Z,2023. Key scientific and technological problems of petroleum exploration and development in deep and ultra-deep formation[J]. Journal of China University of Petroleum (Edition of Natural Science),47(5):1 − 12 (in Chinese with English abstract).

    [22]

    贾承造, 2023. 含油气盆地深层—超深层油气勘探开发的科学技术问题[J]. 中国石油大学学报: 自然科学版, 47(5): 1 − 12.

    Jiang L,Cai C F,Worden R H,2016. Multiphase dolomitization of deeply buried Cambrian petroleum reservoirs,Tarim Basin,north-west China[J]. Sedimentology,63(7):2130 − 2157.

    [23]

    金之钧,朱东亚,胡文瑄,等,2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报,80(2):245 − 253.

    Jin Z J,Zhu D Y,Hu W X,et al.,2006. Geological and geochemical signatures of hydrothermal activity and their influence on carbonate reservoir beds in the Tarim Basin[J]. Acta Geologica sinica,80(2):245 − 253(in Chinese with English abstract).

    [24]

    金之钧, 朱东亚, 胡文瑄, 等, 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响[J]. 地质学报, 80(2): 245 − 253. doi: 10.3321/j.issn:0001-5717.2006.02.009

    Land L S,1980.The isotopic and trace element geochemistry of dolomite: The state of the art[M]. London,Bath: SEPM Special Publication,28: 87 − 110. doi: 10.3321/j.issn:0001-5717.2006.02.009

    [25]

    Land L S,1983. The application of stable isotopes to studies of the origin of dolomite and to problems of diagenesis of clastic sediments[J]. SEPM Short Course,10:411 − 422.

    [26]

    Land L S,1985. The origin of massive dolomite[J]. Journal of Geological Education,33(2):112 − 125.

    [27]

    Lavoie D,Morin C,2004. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in northern Gaspe-Matapedia (Quebec):Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Petroleum Geology,52(3):256. doi: 10.5408/0022-1368-33.2.112

    [28]

    李斌,彭军,夏青松,等,2019. 塔北地区寒武系下丘里塔格群白云石化模式[J]. 吉林大学学报:地球科学版,49(2):310 − 322. doi: 10.2113/52.3.256

    Li B,Peng J,Xia Q S,et al.,2019. Dolomitization Model of Lower Qiulitage Group in Tabei Area[J]. Journal of Jilin University(Earth Science Edition),49(2):310 − 322(in Chinese with English abstract). doi: 10.2113/52.3.256

    [29]

    李斌,张欣,郭强,等,2022. 塔里木盆地寒武系超深层含油气系统盆地模拟[J]. 石油学报,43(6):804 − 815.

    Li B,Zhang X,Guo Q,et al.,2022. Basin modeling of Cambrain ultra-deep petroleum system in Tarim Basin[J]. Acta Petrolei Sinica,43(6):804 − 815(in Chinese with English abstract).

    [30]

    李斌, 张欣, 郭强, 等, 2022. 塔里木盆地寒武系超深层含油气系统盆地模拟[J]. 石油学报, 43(6): 804 − 815.

    Li F,Webb G E,Algeo T J,et al.,2019. Modern carbonate ooids preserve ambient aqueous REE signatures[J]. Chemical Geology,509:163 − 177.

    [31]

    Liu P X,Deng S B,Guan P,et al.,2020. The nature,type,and origin of diagenetic fuids and their control on the evolving porosity of the Lower Cambrian Xiaoerbulak Formation dolostone,northwestern Tarim Basin,China[J]. Petroleum Science,17(4):873 − 895. doi: 10.1016/j.chemgeo.2019.01.015

    [32]

    刘永立,李国蓉,何钊,等,2022. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏,34(6):80 − 91. doi: 10.1007/s12182-020-00434-0

    Liu Y L,Li G R,He Z,et al.,2022. Sequence stratigraphic framework and platform margin belt distribution of Cambrian in northern Tarim Basin[J]. Lithologic Reservoirs,34(6):80 − 91 (in Chinese with English abstract). doi: 10.1007/s12182-020-00434-0

    [33]

    刘永立, 李国蓉, 何钊, 等, 2022. 塔北地区寒武系层序地层格架与台缘带展布特征[J]. 岩性油气藏, 34(6): 80 − 91.

    Lu Z Y,Li Y T,Liu M M,et al.,2022. Non-hydrothermal saddle dolomite in Upper Cambrian dolostones of Tarim Basin:evidence from C-O-Sr isotopic and in-situ trace elemental studies[J]. Carbonates and Evaporites,37(3):1 − 17.

    [34]

    吕海涛,张达景,杨迎春,2009. 塔河油田奥陶系油藏古岩溶表生作用期次划分[J]. 地质科技情报,28(6):71 − 75+83.

    Lü H T,Zhang J D,Yang Y C,2009. Stages of Paleokarstic Hypergenesis in Ordovician Reservoir,Tahe Oilfield[J]. Geological Science and Technology Information,28(6):71 − 75+83(in Chinese with English abstract).

    [35]

    马永生,何治亮,赵培荣,等,2019. 深层−超深层碳酸盐岩储层形成机理新进展[J]. 石油学报,40(12):1415 − 1425.

    Ma Y S,He Y L,Zhao P R,et al.,2019. A new progress in formation mechanism of deep and ultra-deep carbonate reservoir[J]. Acta Petrolei Sinica,40(12):1415 − 1425(in Chinese with English abstract).

    [36]

    马永生, 何治亮, 赵培荣, 等, 2019. 深层−超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 40(12): 1415 − 1425. doi: 10.7623/syxb201912001

    Machel H G,Lonnee J,2002. Hydrothermal dolomite-a product of poor definition and imagination[J]. Sedimentary Geology,152(3 − 4):163 − 171. doi: 10.7623/syxb201912001

    [37]

    Machel H,1997. Recrystallization versus neomorphism,and the concept of 'significant recrystallization' in dolomite research[J]. Sedimentary Geology,113(3 − 4):161 − 168. doi: 10.1016/S0037-0738(02)00259-2

    [38]

    McLennan S,1989. Rare earth elements in sedimentary rocks:influence of provenance and sedimentary processes[J]. Rev. Mineral. Geochem.,21(1):169 − 200.

    [39]

    Montañez I P,J F Read,1992. Fluid-rock interaction history during stabilization of early dolomites,upper Knox Group (Lower Ordovician),U. S. Appalachians[J]. Journal of Sedimentary Research,62(5):753 − 778.

    [40]

    Packard J J,Al-Aasm I,Samson I,et al.,2001. A Devonian hydrothermal chert reservoir:The 225 Bcf parkland field,British Columbia,Canada[J]. AAPG Bulletin,85(1):51 − 84.

    [41]

    Paton C,Hellstrom J,Paul B,et al.,2011. Iolite:Freeware for the visualisation and processing of mass spectrometric data[J]. J Anal Spectrom,26:2508.

    [42]

    彭军,曹俊娇,李斌,等,2018. 塔北与巴楚下丘里塔格群白云岩储层特征对比[J]. 西南石油大学学报:自然科学版,40(2):1 − 14. doi: 10.1039/c1ja10172b

    Peng J,Cao J J,Li B,et al.,2018. Comparison of dolomite reservoir characteristics between the Northern Tarim Basin and Lower Qiulitahe Group of Bachu[J]. Journal of Southwest Petroleum University (Science and Technology Edition),40(2):1 − 14(in Chinese with English abstract). doi: 10.1039/c1ja10172b

    [43]

    彭军, 曹俊娇, 李斌, 等, 2018. 塔北与巴楚下丘里塔格群白云岩储层特征对比[J]. 西南石油大学学报: 自然科学版, 40(2): 1 − 14.

    Qing H R,Barnes C R,Buhl D,et al.,1998. The strontium isotopic composition of Ordovician and Silurian brachiopods and conodonts:relationships to geological events and implications for coeval seawater[J]. Geochimica et Cosmochimica Acta,62:1721 − 1733.

    [44]

    卿海若,陈代钊,2010. 非热液成因的鞍形白云石:来自加拿大萨斯喀彻温省东南部奥陶系Yeoman组的岩石学和地球化学证据[J]. 沉积学报,28(5):980 − 986. doi: 10.1016/S0016-7037(98)00104-5

    Qing H R,Chen D Z,2010. Non-hydrothermal saddle dolomite:Petrological and geochemical evidence from the Ordovician Yeoman Formation,southeastern Saskatchewan,Canada[J]. Acta Sedimentologica Sinica,28(5):980 − 986 (in Chinese with English abstract). doi: 10.1016/S0016-7037(98)00104-5

    [45]

    卿海若, 陈代钊, 2010. 非热液成因的鞍形白云石: 来自加拿大萨斯喀彻温省东南部奥陶系Yeoman组的岩石学和地球化学证据[J]. 沉积学报, 28(5): 980 − 986.

    Qing H R,Mountjoy E,1992. Large-scale fluid-flow in the middle Devonian presquile barrier,western Canada sedimentary basin[J]. Geology,20(10):903 − 906.

    [46]

    Qing H R,Veizer J,1994. Oxygen and carbon isotopic composition of Ordovician brachiopods:Implications for coeval seawater[J]. Geochimica et Cosmochimica Acta,58(20):4429 − 4442.

    [47]

    Shields G,Stille P,2001. Diagenetic constraints on the use of cerium anomalies as palaeoseawater redox proxies:An isotopic and REE study of Cambrian phosphorites[J]. Chemical Geology,175:29 − 48. doi: 10.1016/0016-7037(94)90345-X

    [48]

    Sibley D F,Gregg J M,1987. Classification of dolomite rock textures[J]. Journal of Sedimentary Research,57:967 − 975.

    [49]

    Tian F,Jin Q,Lu X B,et al.,2016. Multi-layered Ordovician paleokarst reservoir detection and spatial delineation:A case study in the Tahe Oilfield,Tarim Basin,Western China[J]. Marine and Petroleum Geology,69:53 − 73.

    [50]

    Tostevin R,Shields G,Tarbuck G,et al.,2016. Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings[J]. Chemical Geology,438:146 − 162. doi: 10.1016/j.marpetgeo.2015.10.015

    [51]

    Veizer J,Ala D,Azmy K,et al.,1999. 87Sr/86Sr,δ13C and δ18O evolution of Phanerozoic seawater[J]. Chemical Geology,161:59 − 88.

    [52]

    Wan Y L,Lin J S,Zhao Z,et al.,2022. Origin of the dolomite in the Buqu Formation (Mid-Jurassic) in the Qiangtang Basin,Tibet:Evidence from the petrographic and geochemical constraints[J]. Frontiers in Earth Science,10:944701. doi: 10.1016/S0009-2541(99)00081-9

    [53]

    万友利,王剑,付修根,等,2020. 羌塘盆地南坳陷中侏罗统布曲组白云岩储层成因流体同位素地球化学示踪[J]. 石油与天然气地质,41(1):189 − 200.

    Wan Y L,Wang J,Fu X G,et al.,2020. Geochemical tracing of isotopic fluid of dolomite reservoir in the Middle Jurassic Buqu Formation in southern depression of Qiangtang Basin[J]. Oil and Gas Geology,41(1):189 − 200(in Chinese with English abstract).

    [54]

    谢会文,能源,敬兵,等,2017. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探,22(3):1 − 11. doi: 10.11743/ogg20200117

    Xie H W,Neng Y,Jing B,et al.,2017. New discovery in exploration of Cambrian–Ordovician dolomite buried hills in Tarim Basin and its significance[J]. China Petroleum Exploration,22(3):1 − 11(in Chinese with English abstract). doi: 10.11743/ogg20200117

    [55]

    谢会文, 能源, 敬兵, 等, 2017. 塔里木盆地寒武系—奥陶系白云岩潜山勘探新发现与勘探意义[J]. 中国石油勘探, 22(3): 1 − 11. doi: 10.3969/j.issn.1672-7703.2017.03.001

    Ye N,Li Y T,Huang B W,Xi B B,et al.,2022. Hydrothermal silicification and its impact on Lower–Middle Ordovician carbonates in Shunnan area,Tarim Basin,NW China[J]. Geological Journal,57(9):3538 − 3557. doi: 10.3969/j.issn.1672-7703.2017.03.001

    [56]

    Ye N,Zhang S N,Qing H R,et al.,2019. Dolomitization and its impact on porosity development and preservation in the deeply burial Lower Ordovician carbonate rocks of Tarim Basin,NW China[J]. Journal of Petroleum Geology,182:106303.

    [57]

    易士威,李明鹏,郭绪杰,等,2022. 塔里木盆地寒武系盐下大气区“裂—隆—坳”格架控藏模式[J]. 天然气地球科学,33(9):1363 − 1383.

    Yi S W,Li M P,Guo X J,et al.,2022. Rift-uplift-depression reservoir-controlling model of large gas province in Cambrian pre-salt,Tarim Basin[J]. Natural Gas Geoscience,33(9):1363 − 1383 (in Chinese with English abstract).

    [58]

    云露,翟晓先,2008. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质,29(6):726 − 732.

    Yun L,Zhai X X,2008. Discussion on characteristics of the Cambrain reservoirs and hydrocarbon accumulation in Well Tashen-1,Tarim Basin[J]. Oil and Gas Geology,29(6):726 − 732(in Chinese with English abstract).

    [59]

    云露, 翟晓先, 2008. 塔里木盆地塔深1井寒武系储层与成藏特征探讨[J]. 石油与天然气地质, 29(6): 726 − 732. doi: 10.3321/j.issn:0253-9985.2008.06.004

    Zhang W,Guan P,Jian X,et al.,2014. In situ geochemistry of Lower Paleozoic dolomites in the northwestern Tarim basin:Implications for the nature,origin,and evolution of diagenetic fluids[J]. Geochemistry,Geophysics,Geosystems,15(7):2744 − 2764. doi: 10.3321/j.issn:0253-9985.2008.06.004

    [60]

    赵文智,汪泽成,黄福喜,等,2023. 中国陆上叠合盆地超深层油气成藏条件与勘探地位[J]. 石油学报,44(12):2020 − 2032.

    Zhao W Z,Wang Z C,Huang F X,et al.,2023. Hydrocarbon accumulation conditions and exploration position of ultra-deep reservoirs in onshore superimposed basins of China[J]. Acta Petrolei Sinica,44(12):2020 − 2032 (in Chinese with English abstract).

    [61]

    赵宗举,罗家洪,张运波,等,2011. 塔里木盆地寒武纪层序岩相古地理[J]. 石油学报,32(6):937 − 948.

    Zhao Z J,Luo J H,Zhang Y B,et al.,2011. Lithofacies paleogeography of Cambrain sequences in the Tarim Basin[J]. Acta Petrolei Sinica,32(6):937 − 948 (in Chinese with English abstract).

    [62]

    郑潇宇,张翔,李健,等,2022. 塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究[J]. 沉积与特提斯地质 ,43(3):530 − 541.

    Zheng X Y,Zhang X,Li J,et al.,2022. Diagenesis and diagenetic evolution of tidal flat facies clastic rocks of Sinian Sugetbrak Formation in Northwest Tarim Basin[J]. Sedimentary Geology and Tethyan Geology,43(3):530 − 541(in Chinese with English abstract).

    [63]

    郑潇宇, 张翔, 李健, 等, 2022. 塔里木盆地西北地区震旦系苏盖特布拉克组潮坪相碎屑岩成岩作用与成岩演化研究[J]. 沉积与特提斯地质 , 43(3): 530 − 541.

    Zhu D Y,Meng Q Q,Jin Z J,et al.,2015. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin,northwestern China[J]. Marine and Petroleum Geology,59:232 − 244.

    [64]

    贾承造,1997. 中国塔里木盆地构造特征与油气[M]. 北京:石油工业出版社. doi: 10.1016/j.marpetgeo.2014.08.022

    Zhu D Y, Meng Q Q, Jin Z J, et al., 2015. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim Basin, northwestern China[J]. Marine and Petroleum Geology, 59: 232 − 244. doi: 10.1016/j.marpetgeo.2014.08.022

  • 加载中

(7)

(1)

计量
  • 文章访问数:  30
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2023-06-01
修回日期:  2024-06-03
录用日期:  2024-07-17
刊出日期:  2025-06-20

目录