Chronology, geochemical characteristics and geological significance of ore- bearing granite porphyries in Gaobaoyue Cu-Au deposit, the Bangong Co-Nujiang metallogenic belt, Xizang, China
-
摘要:
高保约铜金矿为班公湖–怒江成矿带中段新发现的铜金矿床。矿区主要出露花岗闪长岩、花岗斑岩,花岗斑岩为该矿床的含矿岩石。LA-ICP-MS锆石U-Pb测年结果显示,花岗斑岩206Pb/238U加权平均年龄为(154.5±0.7) Ma,表明斑岩形成时代为晚侏罗世。花岗斑岩为钙碱性准铝质I型花岗岩,铝饱和指数(A/CNK)为0.84~0.98,富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素[(La/Yb)N = 5.19~8.61],相对于Rb和Th,亏损 Ba,弱Eu负异常(δEu = 0.70~0.98),具有俯冲带岩浆岩的地球化学特征。斑岩具有均一的锆石Hf同位素组成[εHf(t) = +8.49~+10.28],锆石Hf同位素二阶段模式年龄(TDM2)为662~546 Ma。斑岩全岩(87Sr/86Sr)i值为
0.7072 ~0.7077 ,εNd(t)值为1.69~2.66,Nd同位素二阶段模式年龄(TDM2)为707~640 Ma,富集放射性Pb[(206Pb/204Pb)i = 18.370~18.437,(207Pb/204Pb)i = 15.665~15.669,(208Pb/204Pb)i = 38.605~38.669]。斑岩全岩Nd同位素和锆石Hf同位素存在一定程度的解耦现象。在早期的俯冲过程中,洋壳板片脱水产生的富含水和成矿物质的高氧逸度流体,交代岩石圈地幔并发生部分熔融,形成富含水和成矿物质的高氧逸度幔源岩浆底垫至下地壳底部,形成新生下地壳;在154 Ma左右,班公湖–怒江洋壳北向俯冲消减过程中发生幔源岩浆底侵作用,导致新生下地壳部分熔融,形成高保约含矿斑岩。岩。Abstract:The Gaobaoyue deposit is a newly discovered copper-gold deposit located in the middle section of the Bangong Co-Nujiang metallogenic belt. The ore deposit is primarily associated with exposed granodiorite and granite porphyry, with the latter being an ore-bearing rock. Zircon U-Pb dating results indicate that the weighted average 206Pb/238U age of the granite porphyry is (154.5±0.7) Ma, suggesting a Late Jurassic age for its formation. The granite porphyry is a calc-alkaline, metaluminous I-type granite, with an alumina saturation index (A/CNK) ranging from 0.84 to 0.98. It is enriched in large ion lithophile elements and light rare earth elements, while depleted in high field strength elements and heavy rare earth elements, with (La/Yb)N values ranging from 5.19 to 8.61. Compared to Rb and Th, Ba is depleted. In addition, it exhibits a weak negative europium anomaly, with δEu values varying from 0.70 to 0.98. These geochemical characteristics are typical of magmatic rocks in subduction zones. The porphyry contains homogeneous zircon Hf isotopes with depletion—the εHf(t) values vary from 8.49 to 10.28, and the zircon two-stage model ages (TDM2) range from 662 Ma to 564 Ma. The whole-rock (87Sr/86Sr)i values range from
0.7072 to0.7077 , while the εNd(t) values are from 1.69 to 2.66. The whole-rock Nd isotopic two-stage model ages (TDM2) are from 770 Ma to 640 Ma. The porphyries are enriched in radiogenic whole-rock Pb isotopes, with (206Pb/204Pb)i values varying from 18.370 to 18.437, (207Pb/204Pb)i values from 15.665 to 15.669, and (208Pb/204Pb)i values from 38.605 to 38.669. There is a certain degree of decoupling between the whole-rock Nd isotopes and zircon Hf isotopes. During the early subduction process, high oxygen fugacity fluids rich in water and ore-forming materials, which are generated by the dehydration of the oceanic crust slab, metasomatize the lithospheric mantle and undergo partial melting. Mantle-derived magmas with high oxygen fugacity, rich in water and ore-forming materials, underplate at the bottom of the lower crust, forming a newly formed lower crust. Around 154 Ma, during the northward subduction and consumption process of the Bangong Co-Nujiang oceanic crust, the underplating of mantle-derived magmas occurred, leading to the partial melting of the newly formed lower crust and forming the Gaobaoyue ore-bearing porphyry. -
-
图 1 班公湖–怒江成矿带中段地质简图(a,b)(刘洪等,2015;Liu et al.,2018)和高保约地区地质图(c)①
Figure 1.
图 4 花岗斑岩锆石稀土元素配分模式图(a)、U–Th图解(b)和结晶环境判别图解(c) (Grimes et al.,2007)
Figure 4.
图 6 花岗斑岩TAS分类图(a)(Middlemost,1994)、K2O–SiO2图(b)(Peccerillo and Taylor,1976)和A/NK–A/CNK图(c)(Maniar and Piccoli,1989)
Figure 6.
图 7 花岗斑岩球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough,1989)
Figure 7.
图 12 花岗斑岩锆石εHf(t)和全岩εNd(t)关系图(底图据Vervoort et al.,2011)
Figure 12.
图 13 花岗斑岩构造环境判别图解(a,b据Defant and Drummond,1990;c,d据Pearce et al.,1984)
Figure 13.
图 14 花岗斑岩氧逸度–温度图解(底图据Ridolfi et al.,2010)
Figure 14.
-
[1] Albarède F,Simonetti A,Vervoort J D,et al.,1998. A Hf-Nd isotopic correlation in ferromanganese nodules[J]. Geophysical Research Letters,25(20):3895 − 3898. doi: 10.1029/1998GL900008
[2] Ayers J,1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones[J]. Contributions to Mineralogy & Petrology,132(4):390 − 404.
[3] Baker J,Peate D,Waight T,et al.,2004. Pb isotopic analysis of standards and samples using a 207Pb–204Pb double spike and thallium to correct for mass bias with a double-focusing MC-ICP-MS[J]. Chemical Geology,211(3):275 − 303.
[4] Belousova E A,Griffin W,O'Reilly Suzanne Y,et al.,2002. Igneous zircon:Trace element composition as an indicator of source rock type[J]. Contributions to Mineralogy and Petrology,143(5):602 − 622. doi: 10.1007/s00410-002-0364-7
[5] Bonin B,Frost C D,Ramo O T,et al.,2007. A-type granites and related rocks:Evolution of a concept,problems and prospects[J]. Lithos,97(1):1 − 29.
[6] Chappell B W,1999. Aluminium saturation in I-and S-type granites and the characterization of fractionated haplogranites[J]. Lithos,46(3):535 − 551. doi: 10.1016/S0024-4937(98)00086-3
[7] Chappell B W,Stephens W E,1988. Origin of infracrustal (I-type) granite magmas[J]. Earth and Environmental Science Transactions of the Royal Society of Edinburgh,79(2 − 3):71 − 86. doi: 10.1017/S0263593300014139
[8] 陈华安,祝向平,马东方,等,2013. 西藏波龙斑岩铜金矿床成矿斑岩年代学、岩石化学特征及其成矿意义[J]. 地质学报,87(10):1593 − 1611.
Chen H A,Zhu X P,Ma D F,et al.,2013. Geochronology and geochemistry of the Bolong porphyry Cu-Au deposit,Tibet and its mineralizing significance[J]. Acta Geologica Sinica,87(10):1593 − 1611 (in Chinese with English abstract).
[9] Clemens J D,Vielzeuf D,1987. Constraints on melting and magma production in the crust[J]. Earth and Planetary Science Letters,86(2):287 − 306.
[10] Clemens J,Watkins J,2001. The fluid regime of high-temperature metamorphism during granitoid magma genesis[J]. Contributions to Mineralogy and Petrology,140(5):600 − 606. doi: 10.1007/s004100000205
[11] Collins W J,Richards S W,2008. Geodynamic significance of S-type granites in circum-Pacific orogens[J]. Geology,36(7):559 − 562. doi: 10.1130/G24658A.1
[12] Defant M J,Drummond M S,1990. Derivation of some modern arc magmas by melting of young subducted lithosphere[J]. Nature,347:662 − 665. doi: 10.1038/347662a0
[13] 邓晋福, 2004. 岩石成因、构造环境与成矿作用[M].北京: 地质出版社: 33 − 49.
Deng J F,2004. Petrogenesis,tectonic environment and mineralization[M]. Beijing:Geology Press:33 − 49.
[14] 杜德道,曲晓明,王根厚,等,2011. 西藏班公湖−怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报,27(7):1993 − 2002.
Du D D,Qu X M,Wang G H,et al.,2011. Bidirectional subduction of the Middle Tethys oceanic basin in the west segment of Bangonghu-Nujiang suture,Tibet:Evidence from zircon U-Pb LA-ICP-MS dating and petrogeochemistry of arc granites[J]. Acta Petrologica Sinica,27(7):1993 − 2002 (in Chinese with English abstract).
[15] 方向,宋扬,唐菊兴,等,2020. 西藏班公湖−怒江成矿带商旭金矿成矿时代探讨及其地质意义[J]. 地质学报,94(11):3376 − 3390.
Fang X,Song Y,Tang J X,et al.,2020. Metallogenic epoch study on the Shangxu gold deposit,Bangong-Nujiang suture zone,Tibet and its geological implications[J]. Acta Geologica Sinica,94(11):3376 − 3390 (in Chinese with English abstract).
[16] 方向, 宋扬, 唐菊兴, 等, 2020. 西藏班公湖−怒江成矿带商旭金矿成矿时代探讨及其地质意义[J]. 地质学报, 94(11): 3376 − 3390. doi: 10.3969/j.issn.0001-5717.2020.11.013
Ferry J M,Watson E B,2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J]. Contributions to Mineralogy and Petrology,154(4):429 − 437. doi: 10.3969/j.issn.0001-5717.2020.11.013
[17] 高顺宝,郑有业,王进寿,等,2011. 西藏班戈地区侵入岩年代学和地球化学:对班公湖−怒江洋盆演化时限的制约[J]. 岩石学报,27(7):1973 − 1982. doi: 10.1007/s00410-007-0201-0
Gao S B,Zheng Y Y,Wang J S,et al.,2011. The geochronology and geochemistry of intrusive rocks in Bange area:Constraints on the evolution time of the Bangong Lake-Nujiang ocean basin[J]. Acta Petrologica Sinica,27(7):1973 − 1982 (in Chinese with English abstract). doi: 10.1007/s00410-007-0201-0
[18] 葛小月,李献华,陈志刚,等,2002. 中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约[J]. 科学通报,47(6):474 − 480.
Ge X Y,Li X H,Chen Z G,et al.,2002. Geochemistry and petrogene-sis of Jurassic high Sr/low Y granitoids in eastern China:Constrains on crustal thick-ness[J]. Chinese Science Bulletin,47(11):962 − 968 (in Chinese with English abstract).
[19] 耿全如,潘桂棠,王立全,等,2011. 班公湖−怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报,30(8):1261 − 1274.
Geng Q R,Pan G T,Wang L Q,et al.,2011. Tethyan evolution and metallogenic geological background of the Bangong Co-Nujiang belt and the Qiangtang massif in Tibet[J]. Geological Bulletin of China,30(8):1261 − 1274 (in Chinese with English abstract).
[20] 耿全如, 潘桂棠, 王立全, 等, 2011. 班公湖−怒江带、羌塘地块特提斯演化与成矿地质背景[J]. 地质通报, 30(8): 1261 − 1274. doi: 10.3969/j.issn.1671-2552.2011.08.013
Gorton M P,Schandl E S,2000. From continents to island arcs:A geochemical index of tectonic setting for Arc-related and within-plate felsic to intermediate volcanic rocks[J]. Canadian Mineralogist,38(5):1065 − 1073. doi: 10.3969/j.issn.1671-2552.2011.08.013
[21] Grimes C B,John Barbara,Kelemen Peter,et al.,2007. Trace element chemistry of zircons from oceanic crust:A method for distinguishing detrital zircon provenance[J]. Geology,35(7):643 − 646. doi: 10.2113/gscanmin.38.5.1065
[22] 韩宝福,2007. 后碰撞花岗岩类的多样性及其构造环境判别的复杂性[J]. 地学前缘,14(3):64 − 72. doi: 10.1130/G23603A.1
Han B F,2007. Diverse post-collisional granitoids and their tectonic setting discrimination[J]. Earth Science Frontiers,14(3):64 − 72 (in Chinese with English abstract). doi: 10.1130/G23603A.1
[23] 黄强太,李建峰,夏斌,等,2015. 西藏班公湖−怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义[J]. 地球科学,40(1):34 − 48.
Hang Q T,Li J F,Xia B,et al.,2015. Petrology,geochemistry,chronology and geological significance of Jiang Tso ophiolite in middle segment of Bangonghu-Nujiang suture zone,Tibet[J]. Earth Science ,40(1):34 − 48 (in Chinese with English abstract).
[24] 黄强太, 李建峰, 夏斌, 等, 2015. 西藏班公湖−怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义[J]. 地球科学, 40(1): 34 − 48. doi: 10.3799/dqkx.2015.003
Hawkesworth C J,Turner S P,Mcdermott F,et al.,1997. U-Th isotopes in arc magmas:Implications for element transfer from the subducted crust[J]. Science,276(5312):551 − 555. doi: 10.3799/dqkx.2015.003
[25] Hoskin P W O,Black L P,2000. Metamorphic zircon formation by solid‐state recrystallization of protolith igneous zircon[J]. Journal of Metamorphic Geology,18(4):423 − 439. doi: 10.1126/science.276.5312.551
[26] Hu Z C,Gao S,Liu Y S,et al.,2008. Signal enhancement in laser ablation ICP-MS by addition of nitrogen in the central channel gas[J]. Journal of Analytical Atomic Spectrometry,23(8):1093 − 1101. doi: 10.1046/j.1525-1314.2000.00266.x
[27] Ingle S,Weis D,Frey F A,2002. Indian continental crust recovered from Elan Bank,Kerguelen Plateau (ODP Leg 183,Site 1137)[J]. Journal of Petrology,43(7):1241 − 1257. doi: 10.1039/b804760j
[28] Janney P E,Le Roex A P,Carlson R W,2005. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E)[J]. Journal of Petrology,46(12):2427 − 2464. doi: 10.1093/petrology/43.7.1241
[29] 姜耀辉,蒋少涌,凌洪飞,等,2006. 陆−陆碰撞造山环境下含铜斑岩岩石成因——以藏东玉龙斑岩铜矿带为例[J]. 岩石学报,22(3):697 − 706. doi: 10.1093/petrology/egi060
Jiang Y H,Jiang S Y,Ling H F,et al.,2006. Petrogenesis of Cu-bearing porphyry associated with continent-continent collisional setting:Evidence from the Yulong porphyry Cu ore-belt,east Tibet[J]. Acta Petrologica Sinica,22(3):697 − 706 (in Chinese with English abstract). doi: 10.1093/petrology/egi060
[30] 康志强,许继峰,王保弟,等,2010. 拉萨地块北部去申拉组火山岩:班公湖−怒江特提斯洋南向俯冲的产物?[J]. 岩石学报,26(10):3106 − 3116. doi: 10.3321/j.issn:1000-0569.2006.03.019
Kang Z Q,Xu J F,Wang B D,et al.,2010. Qushenla Formation volcanic rocks in north Lhasa block:Products of Bangong Co-Nujiang Tethy's southward subduction[J]. Acta Petrologica Sinica,26(10):3106 − 3116 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2006.03.019
[31] 康志强, 许继峰, 王保弟, 等, 2010. 拉萨地块北部去申拉组火山岩: 班公湖−怒江特提斯洋南向俯冲的产物?[J]. 岩石学报, 26(10): 3106 − 3116.
Kapp P,Murphy M A,Yin A,et al.,2003. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet[J]. American Geophysical Union,22(4):1 − 24.
[32] Kelemen P B,Johnson K T M,Kinzler R J,et al.,1990. High-field-strength element depletions in arc basalts due to mantle–magma interaction[J]. Nature,345(6275):521 − 524.
[33] Kemp A I S,Hawkesworth C J,Foster G L,et al.,2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopesin zircon.[J]. Science (New York,N. Y. ),315(5814):980 − 983. doi: 10.1038/345521a0
[34] Li C F,Li X H,Li Q L,et al.,2012. Rapid and precise determination of Sr and Nd isotopic ratios in geological samples from the same filament loading by thermal ionization mass spectrometry employing a single-step separation scheme[J]. Analytica Chimica Acta,727:54 − 60.
[35] 李光明,张夏楠,秦克章,等,2015. 羌塘南缘多龙矿集区荣那斑岩−高硫型浅成低温热液Cu-(Au)套合成矿:综合地质、热液蚀变及金属矿物组合证据[J]. 岩石学报,31(8):2307 − 2324. doi: 10.1016/j.aca.2012.03.040
Li G M,Zhang X N,Oin K Z,et al.,2015. The telescoped porphyry-high sulfidation epithermal Cu(-Au) mineralization of Rongna deposit in Duolong ore cluster at the southern margin of Qiangtang Terrane,Central Tibet; Integrated evidence from geology,hydrothermal alteration and sulfide assemblages[J]. Acta Petrologica Sinica,31(8):2307 − 2324 (in Chinese with English abstract). doi: 10.1016/j.aca.2012.03.040
[36] 李金祥,李光明,秦克章,等,2008. 班公湖带多不杂富金斑岩铜矿床斑岩−火山岩的地球化学特征与时代:对成矿构造背景的制约[J]. 岩石学报,24(3):531 − 543.
Li J X,Li G M,Qin K Z,et al.,2008. Geochemistry of porphyries and volcanic rocks and ore-forming geochronology of Duobuza gold-rich porphyry copper deposit in Bangonghu belt,Tibet:Constraints on metallogenic tectonic settings[J]. Acta Petrologica Sinica,24(3) :531 − 543 (in Chinese with English abstract).
[37] 李金祥, 李光明, 秦克章, 等, 2008. 班公湖带多不杂富金斑岩铜矿床斑岩−火山岩的地球化学特征与时代: 对成矿构造背景的制约[J]. 岩石学报, 24(3): 531 − 543.
Li J X,Qin K Z,Li G M,et al.,2013. Petrogenesis of ore-bearing porphyries from the Duolong porphyry Cu–Au deposit,central Tibet:Evidence from U–Pb geochronology,petrochemistry and Sr–Nd–Hf–O isotope characteristics[J]. Lithos,160 − 161:216 − 227.
[38] Li W K,Cheng Y Q,Yang Z M,2019. Geo-fO2:Integrated Software for Analysis of Magmatic Oxygen Fugacity[J]. Geochemistry,Geophysics,Geosystems,20(5):2542 − 2555. doi: 10.1016/j.lithos.2012.12.015
[39] 李献华,李武显,李正祥,2007. 再论南岭燕山早期花岗岩的成因类型与构造意义[J]. 科学通报,52(9):981 − 991.
Li X H,Li W H,Li Z X,2007. Genesis type and tectonic significance of the early Yanshan granites in the Nanling[J]. Chinese Science Bulletin, 52(9):981 − 991 (in Chinese with English abstract).
[40] 林彬,陈毓川,唐菊兴,等,2017. 藏北东窝东铜多金属矿床含矿斑岩年代学、Sr-Nd-Pb同位素及成矿预测[J]. 地质学报,91(9):1942 − 1958.
Lin B,Chen Y C,Tang J X,et al.,2017. Geochronology and Sr-Nd-Pb isotopic geochemistry of ore-bearing porphyry in the Dongwodong copper polymetallic deposit,north Tibet and their Implications for Exploration Direction[J]. Acta Geologica Sinica,91(9):1942 − 1958 (in Chinese with English abstract).
[41] 林彬,方向,王艺云,等,2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示[J]. 岩石学报,35(3):642 − 664. doi: 10.3969/j.issn.0001-5717.2017.09.003
Lin B,Fang X,Wang Y Y,et al.,2019. Petrologic genesis of ore-bearing porphyries in Tiegelongnan giant Cu(Au,Ag) deposit,Tibet and its implications for the dynamic of Cretaceous mineralization Duolong[J]. Acta Petrologica Sinica,35(3):642 − 664 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2017.09.003
[42] 林彬, 方向, 王艺云, 等, 2019. 西藏铁格隆南超大型铜(金、银)矿含矿斑岩岩石成因及其对多龙地区早白垩世成矿动力学机制的启示[J]. 岩石学报, 35(3): 642 − 664. doi: 10.18654/1000-0569/2019.03.03
Ling M X,Wang F Y,Ding X,et al.,2009. Cretaceous ridge subduction along the Lower Yangtze River Belt,Eastern China[J]. Economic Geology,104(2):303 − 321. doi: 10.18654/1000-0569/2019.03.03
[43] Liu D L,Huang Q S,Fan S Q,et al.,2014. Subduction of the Bangong-Nujiang Ocean:constraints from granites in the Bangong Co area,Tibet[J]. Geological Journal,49(2):188 − 206. doi: 10.2113/gsecongeo.104.2.303
[44] 刘海永,唐菊兴,曾庆高,等,2022. 西藏中部塔吉冈矿区早白垩世花岗岩成因及地质意义[J]. 地球科学,47(4):1217 − 1233. doi: 10.1002/gj.2510
Liu H Y,Tang J X,Zeng Q G,et al.,2022. Petrogenesis and geological significance of early Cretaceous granites in Tajigang mining area,central Tibet[J]. Earth Science,47(4):1217 − 1233 (in Chinese with English abstract). doi: 10.1002/gj.2510
[45] 刘海永, 唐菊兴, 曾庆高, 等, 2022. 西藏中部塔吉冈矿区早白垩世花岗岩成因及地质意义[J]. 地球科学, 47(4): 1217 − 1233.
Liu H,Li G M,Huang H X,et al.,2018. Petrogenesis of Late Cretaceous Jiangla'angzong I-type granite in Central Lhasa Terrane,Tibet,China:Constraints from whole-rock geochemistry,zircon U-Pb geochronology,and Sr-Nd-Pb-Hf isotopes[J]. Acta Geologica Sinica(English Edition),92(4):1396 − 1414.
[46] 刘洪,黄瀚霄,李光明,等,2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质,42(4):1126 − 1136. doi: 10.1111/1755-6724.13634
Liu H,Huang H X,Li G M,et al.,2015. Factor analysis in geochemical survey of the Shangxu gold deposit,northern Tibet[J]. Geology in China,42(4):1126 − 1136 (in Chinese with English abstract). doi: 10.1111/1755-6724.13634
[47] 刘洪, 黄瀚霄, 李光明, 等, 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用[J]. 中国地质, 42(4): 1126 − 1136. doi: 10.3969/j.issn.1000-3657.2015.04.026
Liu Y S,Gao S,Hu Z C,et al.,2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology,51(1 − 2):537 − 571. doi: 10.3969/j.issn.1000-3657.2015.04.026
[48] Liu Y S,Hu Z C,Gao S,et al.,2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,257:34 − 43.
[49] Ludwig K R,2003. ISOPLOT 3.00:A geochronological toolkit for microsoft excel[M]. Berkeley Geochronology Center:Special Publication:1 − 70. doi: 10.1016/j.chemgeo.2008.08.004
[50] 马国桃,刘洪,黄瀚霄,等,2017. 班公湖−怒江成矿带中西段造山型金矿床的成矿地质条件和找矿远景[J]. 沉积与特提斯地质,37(3):89 − 95.
Ma G T,Liu H,Huang H X,et al.,2017. Metallogenic conditions and prospecting potential of orogenic gold deposits in the central western part of Bangong Lake-Nujiang metallogenic zone[J]. Sedimentary Geology and Tethyan Geology,37(3):89 − 95 (in Chinese with English abstract).
[51] 马鸿文,1992. 花岗岩成因类型的判别分析[J]. 岩石学报,8(4):341 − 350.
Ma H W,1992. Discrimination of genetic types of granitoid rocks[J]. Acta Petrologica Sinica,8(4):341 − 350 (in Chinese with English abstract).
[52] 马鸿文, 1992. 花岗岩成因类型的判别分析[J]. 岩石学报, 8(4): 341 − 350.
Maniar P D,Piccoli P M,1989. Tectonic discrimination of granitoids[J]. Geological Society of America Bulletin,101(5):635 − 643.
[53] McCarron J J,Smellie J L,1998. Tectonic implications of fore-arc magmatism and generation of high-magnesian andesites:Alexander Island,Antarctica[J]. Journal of the Geological Society,155:269 − 280. doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
[54] McDonough W F,Sun S S,1995. The composition of the Earth[J]. Chemical Geology,120(3):223 − 253. doi: 10.1144/gsjgs.155.2.0269
[55] Middlemost E,1994. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews,37(3 − 4):215 − 224.
[56] 莫宣学,潘桂棠,2006. 从特提斯到青藏高原形成:构造−岩浆事件的约束[J]. 地学前缘,13(6):43 − 51. doi: 10.1016/0012-8252(94)90029-9
Mo X X,Pan G T,2006. From the Tethys to the formation of the Qinghai-Tibet Plateau:constrained by tectono-magmatic events[J]. Earth Science Frontiers,13(6):43 − 51 (in Chinese with English abstract). doi: 10.1016/0012-8252(94)90029-9
[57] 莫宣学, 潘桂棠, 2006. 从特提斯到青藏高原形成: 构造−岩浆事件的约束[J]. 地学前缘, 13(6): 43 − 51.
Möller A,O'Brien P J,Kennedy A,et al.,2003. Linking growth episodes of zircon and metamorphic textures to zircon chemistry:an example from the ultrahigh-temperature granulites of Rogaland (SW Norway)[J]. Geological Society,London,Special Publications,220(1):65 − 81.
[58] Münker C,1998. Nb/Ta fractionation in a Cambrian arc/back arc system,New Zealand:source constraints and application of refined ICPMS techniques[J]. Chemical Geology,144(1 − 2):23 − 45. doi: 10.1144/GSL.SP.2003.220.01.04
[59] 潘桂棠,莫宣学,侯增谦,等,2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报,22(3):521 − 533. doi: 10.1016/S0009-2541(97)00105-8
Pan G T,Mo X X,Hou Z Q,et al.,2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution[J]. Acta Petrologica Sinica,22(3):521 − 533 (in Chinese with English abstract). doi: 10.1016/S0009-2541(97)00105-8
[60] 潘桂棠, 莫宣学, 侯增谦, 等, 2006. 冈底斯造山带的时空结构及演化[J]. 岩石学报, 22(3): 521 − 533.
Patiño D A E,Harris N,1998. Experimental constraints on Himalayan anatexis[J]. Journal of Petrology,39(4):689 − 710.
[61] Pearce J A,Harris N B W,Tindle A G,1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J]. Journal of Petrology,25(4):956 − 983. doi: 10.1093/petroj/39.4.689
[62] Pearce J A,Kempton P D,Nowell G M,et al.,1999. Hf-Nd element and isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems[J]. Journal of Petrology,40(11):1579 − 1611. doi: 10.1093/petrology/25.4.956
[63] Pearce J A,Peate D W,1995. Tectonic implications of the composition of volcanic arc magmas[J]. Annual Review Earth & Planetary Science Letter,23(1):251 − 285. doi: 10.1093/petroj/40.11.1579
[64] Peccerillo R,Taylor Sr,1976. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area,Northern Turkey[J]. Contrib. Mineral Petrol.,58:63 − 81.
[65] Petford N,Gallagher K,2001. Partial melting of mafic (amphibolitic) lower crust by periodic influx of basaltic magma[J]. Earth and Planetary Science Letters,193(3):483 − 499. doi: 10.1007/BF00384745
[66] Plank T,Langmuir C H,Albarede F,et al.,1998. The chemical composition of subducting sediment and its consequences for the crust and mantle[J]. Chemical Geology,145(3 − 4):325 − 394.
[67] Polat A,Münker C,2004. Hf–Nd isotope evidence for contemporaneous subduction processes in the source of late Archean arc lavas from the Superior Province,Canada[J]. Chemical Geology,213(4):403 − 429. doi: 10.1016/S0009-2541(97)00150-2
[68] 强巴扎西,吴浩,格桑旺堆,等,2016. 班公湖−怒江缝合带中段东巧地区早白垩世岩浆作用——对大洋演化和地壳增厚的指示[J]. 地质通报,35(5):648 − 666. doi: 10.1016/j.chemgeo.2004.08.016
Qiangba Z X,Wu H,Gesang W D,et al.,2016. Early Cretaceous magmatism in Dongqiao,Tibet:Implications for the evolution of the Bangong-Nujiang Ocean and crustal growth in a continent-continent collision zone[J]. Geological Bulletin of China,35(5):648 − 666 (in Chinese with English abstract). doi: 10.1016/j.chemgeo.2004.08.016
[69] 曲晓明,王瑞江,代晶晶,等,2012. 西藏班公湖−怒江缝合带中段雄梅斑岩铜矿的发现及意义[J]. 矿床地质,31(1):1 − 12.
Qu X M,Wang R J,Dai J J,et al.,2012. Discovery of xiongmei porphyry copper deposit in middle segment of Bangonghu-Nujiang suture zone and its significance[J]. Mineral Deposits,31(1):1 − 12 (in Chinese with English abstract).
[70] 曲晓明, 王瑞江, 代晶晶, 等, 2012. 西藏班公湖−怒江缝合带中段雄梅斑岩铜矿的发现及意义[J]. 矿床地质, 31(1): 1 − 12. doi: 10.3969/j.issn.0258-7106.2012.01.001
Rapp R P,Watson E B,1995. Dehydration melting of metabasalt at 8–32 kbar:Implications for continental growth and crust-mantle recycling[J]. Journal of Petrology,36(4):891 − 931. doi: 10.3969/j.issn.0258-7106.2012.01.001
[71] Ridolfi F,Renzulli A,Puerini M,2010. Stability and chemical equilibrium of amphibole in calc-alkaline magmas:An overview,new thermobarometric formulations and application to subduction-related volcanoes[J]. Contributions to Mineralogy and Petrology,160(1):45 − 66. doi: 10.1093/petrology/36.4.891
[72] Rudnick R,Gao S,2003. Composition of the continental crust[M]. Treatise Geochem 3:1 − 64. doi: 10.1007/s00410-009-0465-7
[73] Schmitz Mark D,Vervoort Jeff D,Bowring Samuel A,et al.,2004. Decoupling of the Lu-Hf and Sm-Nd isotope systems during the evolution of granulitic lower crust beneath southern Africa[J]. Geology,32(5):405 − 408.
[74] 史仁灯,2007. 班公湖SSZ型蛇绿岩年龄对班−怒洋时限的制约[J]. 科学通报,52(2):223 − 227. doi: 10.1130/G20241.1
Shi R D,2007. Age of Bangong Lake SSZ ophiolite constraints the time of the Bangong Lake-Nujiang Neo-Tethys[J]. Chinese Science Bulletin,52(2):223 − 227 (in Chinese with English abstract). doi: 10.1130/G20241.1
[75] 宋扬,唐菊兴,曲晓明,等,2014. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展,29(7):795 − 809.
Song Y,Tang J C,Qu X M,et al.,2014. Progress in the study of mineralization in the Bangongco-Nujiang metallogenic belt and some new recognition[J]. Advances in Earth Science,29(7):795 − 809 (in Chinese with English abstract).
[76] 宋扬, 唐菊兴, 曲晓明, 等, 2014. 西藏班公湖—怒江成矿带研究进展及一些新认识[J]. 地球科学进展, 29(7): 795 − 809.
Sun S S,McDonough W F,1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications,42(1):313 − 345.
[77] 孙卫东,李贺,凌明星,等,2015. 磁铁矿危机与铜金热液成矿[J]. 矿物岩石地球化学通报,34(5):895 − 901. doi: 10.1144/GSL.SP.1989.042.01.19
Sun W D,Li H,Ling M X,et al.,2015. Magnetite crisis and copper gold mineralization[J]. Bulletin of Mineralogy,Petrology and Geochemistry,34(5):895 − 901 (in Chinese with English abstract). doi: 10.1144/GSL.SP.1989.042.01.19
[78] 孙卫东, 李贺, 凌明星, 等, 2015. 磁铁矿危机与铜金热液成矿[J]. 矿物岩石地球化学通报, 34(5): 895 − 901. doi: 10.3969/j.issn.1007-2802.2015.05.002
Sun W D,Ling M X,Chung S L,et al.,2012. Geochemical constraints on adakites of different origins and copper mineralization[J]. Journal of Geology,120(1):105 − 120. doi: 10.3969/j.issn.1007-2802.2015.05.002
[79] Sun W D,Huang R F,Li H,et al.,2015. Porphyry deposits and oxidized magmas[J]. Ore Geology Reviews,65:97 − 131.
[80] 唐菊兴,张志,李志军,等,2013. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J]. 地球学报,34(4):385 − 394. doi: 10.1016/j.oregeorev.2014.09.004
Tang J X,Zhang Z,Li Z J,et al.,2013. The metallogensis,deposit model and prospecting direction of the Ga'erqiong-Galale copper-gold ore field,Tibet[J]. Acta Geoscientica Sinica,34(4),385 − 394 (in Chinese with English abstract). doi: 10.1016/j.oregeorev.2014.09.004
[81] 唐菊兴, 张志, 李志军, 等, 2013. 西藏尕尔穷—嘎拉勒铜金矿集区成矿规律、矿床模型与找矿方向[J]. 地球学报, 34(4): 385 − 394.
Thiéblemont D,Stein G,Lescuyer J L,1997. Epithermal and porphyry deposits :The adakite connection[J]. Comptes Rendus de l'Academie de Sciences - Serie IIa:Sciences de la Terre et des Planetes,325:103 − 109.
[82] Thirlwall M F,Smith T E,Graham A M,et al.,1994. High field strength element anomalies in arc lavas:Source or process?[J]. Journal of Petrology,35(3):819 − 838.
[83] Vervoort J D,Blichert-Toft J,1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time[J]. Geochimica et Cosmochimica Acta,63(3):533 − 556. doi: 10.1093/petrology/35.3.819
[84] Vervoort J D,Patchett P J,Albarède F,et al.,2000. Hf–Nd isotopic evolution of the lower crust[J]. Earth and Planetary Science Letters,181(1):115 − 129.
[85] Vervoort J D,Plank T,Prytulak J,2011. The Hf–Nd isotopic composition of marine sediments[J]. Geochimica et Cosmochimica Acta,75(20):5903 − 5926.
[86] 王忠恒,王永胜,谢元和,等,2005. 西藏班公湖−怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J]. 沉积与特提斯地质,25(1):155 − 162. doi: 10.1016/j.gca.2011.07.046
Wang Z H,Wang Y S,Xie Y H,et al.,2005. The Tarenben oceanic-island basalts in the middle part of the Bangong-Nujiang suture zone,Xizang and their geological implications[J]. Sedimentary Geology and Tethyan Geology,25(1):155 − 162 (in Chinese with English abstract). doi: 10.1016/j.gca.2011.07.046
[87] 王忠恒, 王永胜, 谢元和, 等, 2005. 西藏班公湖−怒江缝合带中段塔仁本洋岛型玄武岩的发现及地质意义[J]. 沉积与特提斯地质, 25(1): 155 − 162. doi: 10.3969/j.issn.1009-3850.2005.01.029
Watson E B,Harrison T M,1983. Zircon saturation revisited:Temperature and composition effects in a variety of crustal magma types[J]. Earth & Planetary Science Letters,64(2):295 − 304. doi: 10.3969/j.issn.1009-3850.2005.01.029
[88] Whalen J B,Currie K L,Chappell B W,1987a. A-type granites:geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology,95(4):407 − 419.
[89] Whalen J B,Currie K L,Chappell B W,1987b. A-type granites:Geochemical characteristics,discrimination and petrogenesis[J]. Contributions to Mineralogy & Petrology,95(4):407 − 419.
[90] 吴福元,李献华,郑永飞,等,2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报,23(2):185 − 220.
Wu F Y,Li X H,Zheng Y F,et al.,2007. Lu-Hf isotopic systematics and their applications in petrology[J]. Acta Petrologica Sinica,23(2):185 − 220 (in Chinese with English abstract).
[91] 吴福元, 李献华, 郑永飞, 等, 2007. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 23(2): 185 − 220. doi: 10.3969/j.issn.1000-0569.2007.02.001
Wu F Y,Yang Y H,Xie L W,et al.,2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology[J]. Chemical Geology,234(1):105 − 126. doi: 10.3969/j.issn.1000-0569.2007.02.001
[92] 吴福元,李献华,杨进辉,等,2007b. 花岗岩成因研究的若干问题[J]. 岩石学报,23(6):1217 − 1238.
Wu F Y,Li X H,Yang J H,et al.,2007. Discussions on the petrogenesis of granites[J]. Acta Petrologica Sinica,23( 6) :1217 − 1238 (in Chinese with English abstract).
[93] 吴元保,郑永飞,2004. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报,49(16):1589 − 1604.
Wu Y B,Zheng Y F,2004. Genesis of zircon and its constraints on interpretation of U-Pb age[J]. Chinese Science Bulletin,49(16):1589 − 1604 (in Chinese with English abstract).
[94] 谢国刚,谢琳,曹圣华,等,2009. 西藏西部班公湖铁铜多金属矿带的成矿特征与远景评估[J]. 地质通报,28(4):538 − 545. doi: 10.3321/j.issn:0023-074X.2004.16.002
Xie G G,Xie L,Cao S H,et al.,2009. Prospect evaluation and metallogenic features of the Bangong Lake Fe-Cu polymetallic mineralization belt in western Tibet,China[J]. Geological Bulletin of China,28(4):538 − 545 (in Chinese with English abstract). doi: 10.3321/j.issn:0023-074X.2004.16.002
[95] 杨泽黎,王树庆,胡晓佳,等,2018. 内蒙古东乌珠穆沁旗早古生代辉长闪长岩年代学和地球化学特征及地质意义[J]. 岩石矿物学杂志,37(3):349 − 365. doi: 10.3969/j.issn.1671-2552.2009.04.016
Yang Z L,Wang S Q,Hu X J,et al.,2018. Geochronology and geochemistry of Early Paleozoic gabbroic diorites in East Ujimqin Banner of Inner Mongolia and their geological significance[J]. Acta Petrologica et Mineralogica,37(3):349 − 365 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2009.04.016
[96] 姚晓峰,唐菊兴,李志军,等,2013. 班公湖—怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J]. 地质论评,59(1):193 − 200. doi: 10.3969/j.issn.1000-6524.2018.03.001
Yao X F,Tang J X,Li Z J,et al.,2013. The redefinition of the ore-forming porphyry's age in Gaerqiong skarn-type gold-copper deposit,western Bangong Lake-Nujiang River metallogenic belt,Xizang (Tibet)[J]. Geological Review,59(1):193 − 200 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2018.03.001
[97] 姚晓峰, 唐菊兴, 李志军, 等, 2013. 班公湖—怒江带西段尕尔穷矽卡岩型铜金矿含矿母岩成岩时代的重新厘定及其地质意义[J]. 地质论评, 59(1): 193 − 200. doi: 10.3969/j.issn.0371-5736.2013.01.021
Zartman R E,Doe B R,1981. Plumbotectonics—the model[J]. Tectonophysics,75(1):135 − 162. doi: 10.3969/j.issn.0371-5736.2013.01.021
[98] 张海,陆生林,郭伟康,等,2024. 西藏班公湖−怒江成矿带早白垩世吉龙花岗闪长斑岩成因:锆石年代学、Hf同位素及岩石地球化学约束[J]. 沉积与特提斯地质,44(4):740 − 756.
Zhang H,Lu S L,Guo W K,et al.,2024. Petrogenesis of the early Cretaceous Jilong granodiorite porphyry in the Bangong Co-Nujiang metallogenic belt,Xizang,China:Constraints from zircon U-Pb geochronology,Hf isotopes,and whole-rock geochemistry[J]. Sedimentary Geology and Tethyan Geology,44(4):740 − 756 (in Chinese with English abstract).
[99] 张旗,王焰,李承东,等,2006. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报,22(9):2249 − 2269.
Zhang Q,Wang Y,Li C D,et al.,2006. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica,22(9):2249 − 2269 (in Chinese with English abstract).
[100] 张旗,王焰,潘国强,等,2008. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报,24(6):1193 − 1204. doi: 10.3321/j.issn:1000-0569.2006.09.001
Zhang Q,Wang Y,Pan G Q,et al.,2008. Sources of granites; some crucial questions on granite study (4)[J]. Acta Petrologica Sinica,24(6):1193 − 1204 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0569.2006.09.001
[101] 张旗, 王焰, 潘国强, 等, 2008. 花岗岩源岩问题——关于花岗岩研究的思考之四[J]. 岩石学报, 24(6): 1193 − 1204.
Zhang W,Hu Z C,Liu Y S,2020. Iso-Compass:New freeware software for isotopic data reduction of LA-MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry,35(6):1087 − 1096.
[102] 张志,唐菊兴,陈毓川,等,2013. 西藏班−怒结合带尕尔穷铜金矿床矽卡岩矿物学特征及其地质意义[J]. 岩石矿物学杂志,32(3):305 − 317.
Zhang Z,Tang J X,Chen Y C,et al.,2013. Skarn mineral characteristics of the Gaerqiong Cu-Au deposit in Bangong Co-Nujiang River suture zone,Tibet[J]. Acta Petrologica et Mineralogica,32(3):305 − 317 (in Chinese with English abstract).
[103] 张志,唐菊兴,陈毓川,等,2018. 西藏尕尔穷−嘎拉勒铜金矿集区两套火山岩浆源区及其地质意义——来自Hf同位素特征的指示[J]. 矿物岩石,38(3):87 − 95. doi: 10.3969/j.issn.1000-6524.2013.03.003
Zhang Z,Tang J X,Chen Y C,et al.,2018. Magma origin of two series of volcanic rocks from Gaerqiong-Galale Cu-Au ore concentrated area of Tibet and its geological significance:Implication from Hf isotope characteristics[J]. Mineralogy and Petrology,38(3):87 − 95 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-6524.2013.03.003
[104] 赵元艺,崔玉斌,吕立娜,等,2011. 西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J]. 岩石学报,27(7):2132 − 2142.
Zhao Y Y,Cui Y B,Lü L N,et al.,2011. Chronology,geochemical characteristics and the significance of Shesuo copper polymetallic deposit,Tibet[J]. Acta Petrologica Sinica,27(7):2132 − 2142 (in Chinese with English abstract).
[105] 赵元艺, 崔玉斌, 吕立娜, 等, 2011. 西藏舍索矽卡岩型铜多金属矿床年代学与地球化学特征及意义[J]. 岩石学报, 27(7): 2132 − 2142.
Zhao Z H,1997. Principles of trace element geochemistry[M]. Beijing:Geology Press:26 − 112.
[106] 郑永飞,陈伊翔,戴立群,等,2015. 发展板块构造理论:从洋壳俯冲带到碰撞造山带[J]. 中国科学:地球科学,45(6):711 − 735.
Zheng Y F,Chen Y X,Dai L Q,et al.,2015. Developing plate tectonics theory from oceanic subduction zones to collisional orogens[J]. Science China:Earth Sciences,58:1045 − 1069 (in Chinese with English abstract).
[107] Zhu D C,Mo X X,Wang L Q,et al.,2009. Petrogenesis of highly fractionated I-type granites in the Zayu area of eastern Gangdese,Tibet:Constraints from zircon U-Pb geochronology,geochemistry and Sr-Nd-Hf isotopes[J]. Science in China,52(9):1223 − 1239.
[108] 郑永飞, 陈伊翔, 戴立群, 等, 2015. 发展板块构造理论: 从洋壳俯冲带到碰撞造山带[J]. 中国科学: 地球科学, 45(6): 711 − 735.
Zhu D C,Li S M,Cawood P A,et al.,2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos,245:7 − 17.
[109] Zhu D C,Zhao Z D,Niu Y L,et al.,2011. The Lhasa Terrane:Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters,301(1):241 − 255. doi: 10.1007/s11430-009-0132-x
[110] 邓晋福,2004. 岩石成因、构造环境与成矿作用[M].北京: 地质出版社:33 − 49.
Zhu D C, Li S M, Cawood P A, et al., 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction[J]. Lithos, 245: 7 − 17.
[111] 赵振华,2007. 微量元素地球化学原理[M]. 北京:科学出版社:56 − 112.
Zhu D C, Zhao Z D, Niu Y L, et al., 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth[J]. Earth and Planetary Science Letters, 301(1): 241 − 255.
-