Shallow groundwater ages and implication to the intrinsic vulnerability of aquifers in piedmont plain of Taihang mountain
-
摘要: 地下水资源在生产和生活供水中占有重要地位,然而随着人类活动的不断增强,很多地区出现了地下水污染的现象,使得地下水保护研究成为一项势在必行的工作。已有研究显示,地下水年龄可以指示含水层固有脆弱性程度,反映地下水的潜在污染风险性。本次以太行山前平原为研究区,利用3H(3H/3He)同位素识别了浅层地下水年龄并探讨了其对含水层固有脆弱性的指示意义。结果显示,研究区浅层地下水年龄普遍小于40年, 由山前至平原沿地下水流动方向呈现增大特征,并呈现较好的分带性。同时,通过对比前人提出的地下水中现代水的含量指示含水层固有脆弱性的方法,揭示地下水年龄的分布, 对含水层固有脆弱性亦具有较好的指示意义。结果显示,研究区含水层固有脆弱性由山前到平原呈现降低趋势,并利用其他指标和数据进行了验证和讨论。Abstract: Groundwater resources play an important role in water supply for industry and living,however, with the increasing of human activities, groundwater pollution has occurred in many areas.Therefore, groundwater protection research becomes an imperative basic work.Previous studies showed that groundwater ages can indicate the intrinsic vulnerability of aquifers, which reflected the potential pollution risk of groundwater.Taking the piedmont plain of Taihang mountain as an example, the groundwater ages and their implication to intrinsic vulnerability were studied based on 3H(3H/3He)isotopes.The results showed that the ages of the shallow groundwater in the study area were generally less than 40 years, which increased along the direction of groundwater flow from piedmont to plain, and presented a better zonation feature.Simultaneously, comparing with the method of indicating inherent vulnerability of aquifer by content of modern water in groundwater, it revealed that the distribution of groundwater ages also displayed a good indication.The results showed that inherent vulnerability of the aquifers in the study area showed a decreasing trend from the piedmont to the plain, and was discussed and verified with other indicators and data.
-
Key words:
- groundwater age /
- intrinsic vulnerability /
- aquifers /
- indication /
- piedmont plain of Taihang mountain
-
-
[1] 吴爱民,荆继红,宋博.略论中国水安全问题与地下水的保障作用[J].地质学报,2016,90(10):2939-2947.
[2] 蒋万军,孟利山,柳富田,等.张家口地区地下水资源与环境质量现状及开发利用保护建议[J].华北地质,2022,45(3):44-54.
[3] 苗晋杰,靳继红,杜东,等.首都副中心及重点区域地下水环境质量评价与问题成因[J].地质调查与研究,2020,43(3):224-229.
[4] 王攀,靳孟贵,路东臣,等.永城市浅层地下水污染分布特征及来源识别[J].地质科技通报,2022,41(1):260-268.
[5] 李月兴,杨臣,潘虹,等.地下水脆弱性研究综述[J].黑龙江科学,2013,4(5):80-83.
[6] 解飞,刘景涛,张玉玺,等.基于“层级阶梯评价方法”的地下水质量与污染评价-以铜川市为例[J].地学前缘,2021,(05):24-34.
[7] 江欣悦,李静,郭林,等.豫北平原浅层地下水化学特征与成因机制[J].地质科技通报,2021,40(5):290-300.
[8] 姜桂华.地下水脆弱性研究进展[J].世界地质,2002,21(1):33-38.
[9] 王焰新.地下水污染与防治[M].北京:高等教育出版社,2007.
[10] 李晨,秦大军.关中盆地浅层地下水CFC 年龄的计算[J].工程勘察,2009,(9):39-44.
[11] 石旭飞,董维红,李满洲,等.河南平原浅层地下水年龄[J].吉林大学学报(地球科学版),2012,42(1):190-197.
[12] 陈宗宇,陈京生,费宇红,等.利用氚估算太行山前地下水更新速率[J].核技术,2006,29(6):426-431.
[13] ANDREW H MANNING, D KIP SOLOMON, SUSAN A THIROS.3H/3He Age Data in Assessing the Susceptibility of Well to Contamination[J].Ground Water, 2005, 43:353-367.
[14] 卫文.华北平原第四系含水层地下水年龄与补给温度[D].北京:中国地质科学院,2007.
[15] 尚海敏,李国敏,于进庆, 等.环境同位素技术在地下水研究中的应用[J].地下水,2008,30(2):18-22.
[16] GELLERMANN R, JORDAN H, HEBERT D, et al.A Concept and Isotope Method for Groundwater Vulnerability Assessment[J].Isotope praxis, 1990, 12:561-565.
[17] FERNANDO L V, JAN S, EDUARDO F, et al.Identification of zones of higher aquifer vulnerability by means of stable environmental isotopes[J].Groundwater Quality:Remediation and Protection (Proceedings of the Prague Conference), IAHS, 1995:225.
[18] Nelms D L, Georage E, Harlow J.Aquifer Susceptibility in Virginia: Data on Chemical and Isotopic Composition, Recharge Temperature, and Apparent Age of Water from Wells and Springs, 1998-2000 [R].Open-File Report 03-246, US Department of the Interior, US Geological Survey, 2003.
[19] Moran J E, Leif R, Esser B K, et al.Evidence for Groundwater Contamination Vulnerability in California’s Central Valley [J].California Plant and Soil Conference, USA, 2006.2.
[20] Koh D C, Plummer L N, Solomon D K, et al.Application of environmental tracers to mixing, evolution and nitrate contamination of ground water in Jeju Island, Korea [J].Journal of Hydrology, 2006, 327:258-275.
[21] 张翼龙,陈宗宇,曹文庚,等.DRASTIC 与同位素方法在内蒙古呼和浩特市地下水防污性评价中的应用[J].地球学报,2012,33(5):819-825.
[22] MOLSON J W, FRIND E O.On the use of mean groundwater age, life expectancy and capture probability for defining aquifer vulnerability and time-of-travel zones for source water protection [J].Journal of Contaminant Hydrology, 2012, 127:76-87.
[23] Edward K.P.Bam, Samuel Bansah.Groundwater chemistry and isotopes reveal vulnerability of granitic aquifer in the White Volta River watershed, West Africa [J].Applied Geochemistry, 2020, 119:1-18.
[24] ANDREAS M KREUZER, CHRISTOPH VON ROHDEN, RONNY FRIEDRICH, et al.A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain[J].Chemical Geology, 2009, 259:168-180.
[25] 张翠云.氮同位素技术及其在石家庄市地下水硝酸盐污染研究中的应用[D].北京:中国地质大学(北京),2005.
[26] LU YINTAO, TANG CHANGYUAN, CHEN JIANYAO, et al.Spatial characteristics of water quality, stable isotopes and tritium associated with groundwater flow in the Hutuo River alluvial fan plain of the North China Plain[J].Hydrogeology Journal, 2008, 16:1003-1015.
[27] KREUZER.A record of temperature and monsoon intensity over the past 40 kyr from groundwater in the North China Plain[J].Chemical Geology, 2009, 259:168-180.
[28] MALOSZEWSKI P, ZUBER A.Lumped parameter models for interpretation of environmental tracer data.Manual on Mathematical Models in Isotope Hydrogeology[R].IAEATECDOC 910, IAEA, Vienna, 9-58, 1996.
[29] HINSBY K, EDMUNDS W M, LOOSI H H, et al.The morden water interface:Recognition, protection, and development-Advance of modern waters in European aquifer systems[J].The G eology Society, 2001, (189):271-288.
[30] 贺新春,邵东国,陈南祥,等.几种评价地下水环境脆弱性方法之比较[J].长江科学院院报,2005,22(3):17-20.
[31] 唐克旺,唐蕴,徐鹏云.地下水脆弱性评价:概念、方法与应用[J].中国水利,2013,19:57-64.
-
计量
- 文章访问数: 33
- PDF下载数: 3
- 施引文献: 0