中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Su Hui-Meng, Zhang Fa-Wang, Hu Jing-Yu, Lei Jin-Feng, Zuo Wei, Yang Bo, Liu Yu-Hua. 2024. Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi-isotopes combined with hydrochemistry methods. Journal of Groundwater Science and Engineering, 12(1): 62-77. doi: 10.26599/JGSE.2024.9280006
Citation: Su Hui-Meng, Zhang Fa-Wang, Hu Jing-Yu, Lei Jin-Feng, Zuo Wei, Yang Bo, Liu Yu-Hua. 2024. Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi-isotopes combined with hydrochemistry methods. Journal of Groundwater Science and Engineering, 12(1): 62-77. doi: 10.26599/JGSE.2024.9280006

Identified the hydrochemical and the sulfur cycle process in subsidence area of Pingyu mining area using multi-isotopes combined with hydrochemistry methods

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Hydrochemical parameters and PHREEQC calculation results of water samples in the study area

    TypeNumberpHK+Na+Ca2+Mg2+ClSO42−HCO3NO3H2SiO3TDSDepthSI-
    calcite
    SI-
    dolomite
    Concentration(mg/L)m
    Surface water XF 7.15 5.45 19.35 46.53 26.13 20.74 73.20 223.62 6.86 20.12 310.64 0.00 −0.24 −0.38
    YL 7.19 3.70 4.07 43.09 10.45 15.95 23.65 139.00 4.86 7.44 175.55 0.00 −0.38 −1.02
    NT 7.22 12.00 17.44 67.21 26.13 25.52 61.28 290.10 12.70 24.49 368.10 0.00 0.09 0.11
    XS 7.25 9.12 15.10 86.17 29.26 35.10 83.16 314.27 16.55 5.36 432.17 0.00 0.24 0.35
    HS 7.28 9.38 16.10 39.64 15.68 38.29 13.50 181.31 1.30 5.89 225.28 0.00 −0.22 −0.50
    BS 7.30 11.17 68.88 89.62 27.17 82.95 203.80 229.66 34.81 3.30 634.39 0.00 0.13 0.07
    YH 7.33 6.56 42.06 151.66 36.58 118.05 237.70 271.96 53.42 16.48 782.56 0.00 0.42 0.56
    HTL 7.35 4.36 11.46 44.81 19.86 35.10 68.60 145.05 1.29 6.41 258.43 0.00 −0.22 −0.45
    MG 7.37 4.05 10.54 51.70 22.99 31.91 81.72 169.22 1.04 3.04 289.07 0.00 −0.08 −0.18
    LFS 7.40 8.74 13.55 44.81 19.86 38.29 48.26 169.22 1.09 1.24 259.60 0.00 −0.10 −0.21
    LT 7.45 3.51 9.33 65.49 17.77 41.48 87.04 145.05 6.00 0.20 303.63 0.00 0.03 −0.18
    LW 7.47 4.32 18.02 77.55 17.77 57.43 101.60 169.22 13.60 0.20 375.37 0.00 0.17 0.03
    YW 7.49 4.89 24.01 67.21 26.13 82.95 116.20 145.05 <0.88 0.20 394.33 0.00 0.05 0.03
    ZT 7.52 13.42 58.90 162.00 22.99 264.81 98.12 193.40 5.38 10.93 723.37 0.00 0.53 0.56
    Pore water ZK3 7.23 3.84 20.71 99.96 34.49 63.81 48.84 338.45 31.15 19.14 472.64 55.00 0.31 0.50
    ZK2 7.35 4.97 14.92 133.07 42.78 72.99 82.75 364.34 94.25 30.71 651.66 55.00 0.54 0.94
    ZK7 7.22 1.89 11.54 72.14 23.33 8.69 23.68 332.66 22.30 22.48 347.62 100.00 0.19 0.23
    ZK9 7.36 0.13 15.44 134.43 31.35 60.62 52.66 350.53 76.20 23.24 546.47 70.00 0.56 0.83
    ZK11 7.22 1.10 20.18 105.13 22.99 33.50 86.68 320.31 31.15 18.19 461.31 200.00 0.30 0.27
    ZK13 7.26 4.08 19.57 98.24 31.35 54.24 55.82 350.53 37.00 17.45 475.93 190.33 0.35 0.54
    ZK12 7.29 3.48 25.48 84.45 21.95 25.52 50.60 362.62 3.51 21.16 396.74 132.06 0.35 0.45
    ZK16 7.32 7.77 13.87 82.73 11.50 31.91 28.83 253.83 26.68 14.59 330.69 241.00 0.24 −0.04
    Karstic water SMH 7.30 3.94 26.90 98.56 43.56 159.53 63.60 229.66 43.50 21.98 554.76 300.00 0.20 0.38
    MZ-1 7.32 0.99 11.93 95.22 26.34 35.10 75.55 296.14 28.71 16.12 422.23 400.00 0.33 0.44
    ZK17 7.30 3.89 17.72 73.50 23.30 24.57 23.95 380.18 8.44 18.50 365.84 371.00 0.33 0.50
    PY-X 7.35 5.81 32.84 79.28 29.26 28.71 61.30 308.23 14.96 25.81 406.79 800.00 0.30 0.52
    PY-D 7.38 7.77 33.58 67.21 29.26 22.33 61.32 302.18 7.98 27.63 381.23 800.00 0.26 0.50
    ZK19 7.30 3.38 12.90 130.30 12.16 45.62 39.76 364.34 31.12 19.45 458.02 259.80 0.53 0.37
    DC-3 7.28 2.73 13.84 91.88 35.46 44.67 76.20 332.40 17.96 21.61 449.33 300.00 0.32 0.56
    下载: 导出CSV

    Table 2.  Hydrochemical types in Pingyu Mining area

    TypeHydrochemical typeAmountProportion(%)
    Pore water HCO3—Ca·Mg 6 42.86
    HCO3·SO4—Ca·Mg 4 28.57
    SO4·HCO3—Ca 1 7.14
    SO4·HCO3—Ca·Na 1 7.14
    SO4·HCO3·Cl—Ca·Mg 1 7.14
    Cl—Ca 1 7.14
    Pore water HCO3—Ca·Mg 6 75.00
    HCO3—Ca 2 25.00

    Karstic water

    HCO3—Ca·Mg 5 71.43
    HCO3—Ca 1 14.29
    Cl·HCO3—Ca·Mg 1 14.29
    下载: 导出CSV

    Table 3.  Correlation analysis table

     K+Na+Ca2+Mg2+ClSO42−HCO3NO3H2SiO3TDS
    K+1.000         
    Na+0.2371.000        
    Ca2+−0.3770.3411.000       
    Mg2+−0.1160.3420.2771.000      
    Cl−0.1360.4740.5480.6291.000     
    SO42−−0.2660.3860.6280.5090.3471.000    
    HCO3−0.285−0.0840.439−0.036−0.3140.2551.000   
    NO3−0.2970.2530.8860.5130.6040.5890.3111.000  
    H2SiO30.0790.3360.3900.4380.1430.4940.3780.4461.000 
    TDS−0.3060.4500.9230.6020.7050.7340.3370.9300.5131.000
    下载: 导出CSV

    Table 4.  Eigenvectors of the 3 PCs.

     123
    K+−0.304−0.1300.812
    Na+0.520−0.0230.617
    Ca2+0.7930.414−0.226
    Mg2+0.723−0.0630.229
    Cl0.872−0.3990.052
    SO42−0.6880.3920.070
    HCO30.0210.902−0.228
    NO30.8500.310−0.158
    H2SiO30.3910.6280.467
    TDS0.9360.321−0.045
    Total4.5021.9121.448
    Variance percentage (%)45.01619.12114.482
    Accumulate%45.01664.13778.620
    下载: 导出CSV
  • Acharya BS, Kharel G. 2020. Acid mine drainage from coal mining in the United States - An overview. Journal of Hydrology, 588: 125061. DOI:10.1016/j.jhydrol.2020.125061.

    Ansari MA, Noble J, Deodhar A, et al. 2020. Atmospheric factors controlling the stable isotopes (δ18O and δ2H) of the Indian summer monsoon precipitation in a drying region of Eastern India. Journal of Hydrology, 584: 124636. DOI:10.1016/j.jhydrol.2020.124636.

    Ágnes Ó, Juarez AF, Mariette S, et al. 2022. Sulfur and oxygen isotope constraints on sulfate sources and neutral rock drainage-related processes at a South African colliery. Science of the Total Environment, 846: 157178. DOI:10.1016/j.scitotenv.2022.157178.

    Banks D, Boyce AJ, Burnside NM, et al. 2020. On the common occurrence of sulphate with elevated δ34S in European Mine waters: Sulphides, evaporites or seawater? International Journal of Coal Geology, 232: 103619.

    Cha XF, Wu P, Li XX, et al. 2022. Karst hydrogeochemical characteristics and controlling factors of carlin-type gold mining area based on hydrochemistry and sulfur isotope. Environmental Science, 43(11): 5084−5095. (in Chinese) DOI:10.13227/j.hjkx.202112141.

    David BW, Adrian JB, David B, et al. 2023. The occurrence of elevated δ34S in dissolved sulfate in a multi-level coal mine water system, Glasgow, UK. International Journal of Coal Geology, 272: 104248. DOI:10.1016/j.coal.2023.104248.

    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI:10.1126/science.170.3962.1088.

    Huang PH, Zhang YN, Li YM, et al. 2023. A multiple isotope (S, H, O and C) approach to estimate sulfate increasing mechanism of groundwater in coal mine area. Science of the Total Environment, 900: 165852. DOI:10.1016/j.scitotenv.2023.165852.

    Jacob A, Eric OA, Cynthia L, et al. 2023. Statistical and isotopic analysis of sources and evolution of groundwater. Physics And Chemistry Earth, Parts A/B/C, 129: 103337.

    Jiang CL, Cheng LL, Li C, et al. 2022. A hydrochemical and multi-isotopic study of groundwater sulfate origin and contribution in the coal mining area. Ecotoxicology and Environmental Safety, 248: 114286. DOI:10.1016/j.ecoenv.2022.114286.

    Liu F, Wang S, Yeh TC J, et al. 2020. Using multivariate statistical techniques and geochemical modelling to identify factors controlling the evolution of groundwater chemistry in a typical transitional area between Taihang Mountains and North China Plain. Hydrological Processes, 34(8): 1888−1905. DOI:10.1002/hyp.13701.

    Mao HR, Wang CY, Qu S, et al. 2023. Source and evolution of sulfate in the multi-layer groundwater system in an abandoned mine−insight from stable isotopes and Bayesian isotope mixing model. Science of the Total Environment, 859: 160368. DOI:10.1016/j.scitotenv.2022.160368.

    Moya CE, Raiber M, Taulis M, et al. 2016. Using environmental isotopes and dissolved methane concentrations to constrain hydrochemical processes and inter-aquifer mixing in the Galilee and Eromanga Basins, Great Artesian Basin, Australia. Journal of Hydrology, 539: 304−318. DOI:10.1016/j.jhydrol.2016.05.016.

    Pan GY, Zhang K, Wang PL. 2011. Using stable isotopes to determine the source of mine water supply - Taking Pingyu No. 1 Mine as an Example. Journal of Water Resources and Water Engineering, 22(06): 119−122. (in Chinese)

    Qu S, Duan LM, Shi ZM, et al. 2022. Hydrochemical assessments and driving forces of groundwater quality and potential health risks of sulfate in a coalfield, northern Ordos Basin, China. Science of the Total Environment, 835: 155519. DOI:10.1016/j.scitotenv.2022.155519.

    Ren K, Zeng J, Liang JP, et al. 2021. Impacts of acid mine drainage on Karst aquifers: Evidence from hydrogeochemistry, stable sulfur and oxygen isotopes. Science of the Total Environment, 761: 143223. DOI:10.1016/j.scitotenv.2020.143223.

    Rinder T, Dietzel M, Stammeier JA, et al. 2020. Geochemistry of coal mine drainage, groundwater, and brines from the Ibbenbüren Mine, Germany: A coupled elemental-isotopic approach. Applied Geochemistry, 121: 104693. DOI:10.1016/j.apgeochem.2020.104693.

    Sabina JK, Kinga S. 2022. Isotopic signature of anthropogenic sources of groundwater contamination with sulfate and its application to groundwater in a heavily urbanized and industrialized area (Upper Silesia, Poland). Journal of Hydrology, 612: 128255. DOI:10.1016/j.jhydrol.2022.128255.

    Sahoo S, Khaoash S. 2020. Impact assessment of coal mining on groundwater chemistry and its quality from Brajrajnagar coal mining area using indexing models. Journal of Geochemical Exploration, 215: 106559. DOI:10.1016/j.gexplo.2020.106559.

    Su C, Cheng ZS, Wei W, et al. 2018. Assessing groundwater availability and the response of the groundwater system to intensive exploitation in the North China Plain by analysis of long-term isotopic tracer data. Hydrogeology Journal, 26(5): 1401−1415. DOI:10.1007/s10040-018-1761-y.

    Su HM, Zhang FW, Hou SY, et al. 2023. An analysis of groundwater circulation in the Pingyu mining area based on hydrochemical and isotopic characteristics of groundwater. Hydrogeology& Engineering Geology, 2023,50(05): 53−67. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.202306010.

    Tang H. 2011. Numerical simulation and prediction of Karst water dewatering flow in Pingyu 1st coal mine. Henan Province. M. S. thesis. Jiaozuo: Henan Polytechnic University. (in Chinese)

    Tao M, Cheng WQ, Nie KM, et al. 2022. Life cycle assessment of underground coal mining in China. Science of the Total Environment, 805: 150231. DOI:10.1016/j.scitotenv.2021.150231.

    Wang CY, Liao F, Wang GC, et al. 2023. Hydrogeochemical evolution induced by long-term mining activities in a multi-aquifer system in the mining area. Science of the Total Environment, 854: 158806. DOI:10.1016/j.scitotenv.2022.158806.

    Wu XX, Chen FL, Zhou X, et al. 2022. Comparative analysis of precipitation isotopes and water vapor sources in Zhengzhou and Fuzhou. Environmental Chemistry, 41(1): 125−134. (in Chinese)

    Zhang FY. 2017. Division and isotope correlation study of groundwater aquifer group in Xuchang. Ground Water, 39(4): 40−41,111. (in Chinese) DOI:10.3969/j.issn.1004-1184.2017.04.012.

    Zhang J, Chen LW, Hou XW, et al. 2021. Multi-isotopes and hydrochemistry combined to reveal the major factors affecting Carboniferous groundwater evolution in the Huaibei Coalfield, North China. Science of the Total Environment, 791: 148420. DOI:10.1016/j.scitotenv.2021.148420.

    Zheng LG, Chen X, Dong XL, et al. 2019. Using δ34S–SO4 and δ18O–SO4 to trace the sources of sulfate in different types of surface water from the Linhuan coal-mining subsidence area of Huaibei, China. Ecotoxicology and Environmental Safety, 181: 231−240. DOI:10.1016/j.ecoenv.2019.06.001.

    Zhou JW, Zhang YP, Zhou AG, et al. 2016. Application of hydrochemistry and stable isotopes (δ34S, δ18O and δ37Cl) to trace natural and anthropogenic influences on the quality of groundwater in the piedmont region, Shijiazhuang, China. Applied Geochemistry, 71: 63−72. DOI:10.1016/j.apgeochem.2016.05.018.

    Zou S, Zhang D, Li XQ, et al. 2022. Sources and pollution pathways of deep groundwater sulfate underneath the Piedmont Plain in the North Henan Province. Earth Science, 47(2): 700−716. (in Chinese)

  • 加载中

(8)

(4)

计量
  • 文章访问数:  647
  • PDF下载数:  18
  • 施引文献:  0
出版历程
收稿日期:  2023-06-15
录用日期:  2023-12-15
网络出版日期:  2024-03-15
刊出日期:  2024-03-15

目录