中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Zineb Allia, Meriem Lalaoui. 2024. Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria. Journal of Groundwater Science and Engineering, 12(1): 78-91. doi: 10.26599/JGSE.2024.9280007
Citation: Zineb Allia, Meriem Lalaoui. 2024. Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria. Journal of Groundwater Science and Engineering, 12(1): 78-91. doi: 10.26599/JGSE.2024.9280007

Formation mechanism of hydrochemical and quality evaluation of shallow groundwater in the Upper Kebir sub-basin, Northeast Algeria

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Physicochemical groundwater quality constituents in the Upper Kebir sub-basin

    pHTCETDSTHTAO2 disCaMgNaClSO4HCO3NO3
    Unit°CμS/cmmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/L
    17.015.91,8651,2864942400.16115321823147615628
    27.414.31,2851,0742801050.2594411543127913035
    37.220.31,4201,2514771840.2414317208402869236
    47.022.42,8101,8574702201.88186632413578623937
    57.115.04,4602,5433202880.12126582573758721637
    67.020.39607494502100.17154622736512017637
    77.219.91,0757444493120.161274220737514022541
    87.116.51,6091,1634493420.061576713537914628441
    97.016.32,9001,8699583760.292576229543214829242
    107.113.01,2008573724050.11864820838515728548
    117.018.67025092681960.34952521334115712853
    127.813.96305792922020.03956521038415713554
    137.015.02,3801,3608521860.551054829145015812762
    147.016.68857042921260.161283420535716216368
    157.011.54,9183,0064912018.121144226540316318968
    167.116.52,6201,6103731863.5843524235616914582
    177.415.45,8304,2234122042.071363821436517813782
    187.717.73,5252,4343431906.041432823837518618592
    197.319.65,2823,2145382345.42035823942519820794
    207.217.34,2002,9404331580.71292925940521318295
    217.121.71,3751,2503652020.71613947228390241175108
    226.717.32,9001,7261141540.7413348224365385186114
    237.015.54,1962,3695703100.48118936229385428230115
    247.518.92,17211495003020.5081483323232519825437
    下载: 导出CSV

    Table 2.  Summary statistics of groundwater physicochemical parameters with WHO drinking water quality standards

    MinMaxMeanSDCV%WHO (2011)Number of samples below MPLNumber of samples exceeding MPL
    DLMPL
    pH 6.7 7.85 7.15 0.27 3.80 6.5–8.5 9.2 24 0
    T (°C) 11.5 22.4 17.05 2.81 16.45 25 24 0
    EC (µs/cm) 630 5,830 2,549.96 1,565.41 61.39 900 1,400 3 21
    TDS (mg/L) 509 4,223 1,686.01 967.44 57.38 600 900 0 24
    TH as CaCO3 (mg/L) 114 958 440.08 177.04 40.23 100 500 0 24
    TA as CaCO3 (mg/L) 105 405 230.54 76.90 33.35 150 - 2 22
    Dissolved O2 (mg/L) 0.03 8.12 1.336 2.18 159.84 4–6 - 22 2
    Ca (mg/L) 84 257 141.08 40.30 28.56 75 200 23 1
    Mg (mg/L) 6 67 41.75 15.55 37.24 50 150 24 0
    Na (mg/L) 135 295 225.13 36.60 16.26 - 200 2 22
    Cl (mg/L) 312 450 375.92 34.23 9.10 250 600 24 0
    SO4 (mg/L) 76 486 183.58 106.23 57.87 200 500 24 0
    HCO3 (mg/L) 92 292 189.08 55.10 29.14 125 350 24 0
    NO3 (mg/L) 28 128 66.54 30.53 45.88 50 - 10 14
    Min: Minimum, Max: Maximum, SD: Standard deviation, CV%: Coefficients of variation (%), DL: Desirable limits, MPL: Maximum permissible limits. EC, TDS, TH and TA Values are at 25°C.
    下载: 导出CSV

    Table 4.  WQI Computation of groundwater in the study area

    SiwiWiCi
    (Mean values)
    qiSI
    pH8.530.0977.1584.148.16
    T (°C)2540.12917.0568.248.80
    EC (µs / cm)150030.0972,549.96170.0016.49
    Ca (mg/L)20020.065141.0870.544.59
    Mg (mg/L)15020.06541.7527.831.81
    Na (mg/L)20020.065225.13112.567.32
    Cl (mg/L)25040.128375.92126.0616.14
    SO4 (mg/L)25030.097183.5873.434.12
    HCO3 (mg/L)12530.097189.08150.3714.59
    NO3 (mg/L)5050.16066.54133.0821.29
    Σwi = 311
    下载: 导出CSV

    Table 3.  Classification of water quality

    RankingWQI ValueExplanation
    < 50Excellent waterGood for human health
    50–100Good waterSuitable for human consumption
    100–200Poor waterWater in poor condition
    200–300Very poor waterNeeds special attention before use
    > 300Unsuitable for drinkingRequires too much attention
    下载: 导出CSV
  • Abdelhamid K. 2016. Caractérisation des paramètres hydrodynamiques de l'aquifère deTadjnant –Chelghoum Laid et impact de la pollution des eaux desurface sur les eaux souterraines. Thèse Doc. Es. Sci., Univ. Batna2: Algérie: 162.

    ABH. 2014. Le bassin du Khébir Rhumel. Cahiers de l'agence 15 : Alger.

    Adimalla N, Qian H. 2019. Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, South India. Ecotoxicology and Environmental Safety, 176: 153−161. DOI:10.1016/j.ecoenv.2019.03.066.

    Allia Z, Lalaoui M, Chebbah M. 2022. Hydrochemical assessment for the suitability of drinking and irrigation use of surface water in Grouz Dam Basin, Northeast Algeria. Sustainable Water Resources Management, 8(3): 88. DOI:10.1007/s40899-022-00663-8.

    Allia Z, Chebbah M, Ouamane A. 2018. Analyse et évaluation de la qualité des eaux du système aquifère mio-pliocène dans le Zab Chergui, Bas Sahara Septentrional. Courrier du Savoir, univ Biskra, Algérie, 26: 235-244

    Ameen HA. 2019. Spring water quality assessment using water quality index in villages of Barwari Bala, Duhok, Kurdistan Region, Iraq. Applied Water Science, 9(8): 176. DOI:10.1007/s13201-019-1080-z.

    APHA. 2005. Standard methods for examination of water and wastewater 21st ed. American Public Health Association, Washington D. C.

    Bouderbala A, Gharbi BY. 2017. Hydrogeochemical characterization and groundwater quality assessment in the intensive agricultural zone of the Upper Cheliff plain, Algeria. Environmental Earth Sciences, 76(21): 744. DOI:10.1007/s12665-017-7067-x.

    Campo M, Esteller MV, Exposito J. et al. 2014. Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186: 2979−2999. DOI:10.1007/s10661-013-3595-3.

    Chebbah M, Allia Z. 2014. Geochemistry and hydrogeochemical process of groundwater in arid region: A case study of the water table in the Souf Valley (Low Septentrional Sahara, Algeria). African Journal of Geo-Science Research, 2(3): 23−30.

    Durozoy G. 1960. Etude géologique de la région de Châteaudun du Rhumel, publ. Serv. Carte Géol. Algérie, Nlle sér. 22, Alger.

    Fakharian K, Narany TS. 2016. Multidisciplinary approach to evaluate groundwater salinity in Saveh Plain, Iran. Environmental Earth Sciences, 75(7): 624. DOI:10.1007/s12665-015-5104-1.

    Freeze RA, Cherry JA. 1979. Groundwater, Prentice-Hall, Inc. Englewood Cliffs, New Jersey 07632, United States of America. p 589.

    Ganiyu SA, Badmus BS, Olurin OT, et al. 2018. Evaluation of seasonal variation of water quality using multivariate statistical analysis and irrigation parameter indices in Ajakanga area, Ibadan, Nigeria. Applied Water Science, 8(1): 35. DOI:10.1007/s13201-018-0677-y.

    Ghouili N, Hamzaoui-Azaza F, Zammouri M, et al. 2018. Groundwater quality assessment of the Takelsa phreatic aquifer (Northeastern Tunisia) using geochemical and statistical methods: Implications for aquifer management and end-users. Environmental Science and Pollution Research, 25(36): 36306−36327. DOI:10.1007/s11356-018-3473-1.

    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI:10.1126/science.170.3962.1088.

    Hassen I, Hamzaoui-Azaza F, Bouhlila R. 2016. Application of multivariate statistical analysis and hydrochemical and isotopic investigations for evaluation of groundwater quality and its suitability for drinking and agriculture purposes: Case of Oum Ali-Thelepte aquifer, central Tunisia. Environmental Monitoring and Assessment, 188(3): 135. DOI:10.1007/s10661-016-5124-7.

    Horton RK. 1965. An index number system for rating water quality. Journal of the Water Pollution Control Federation. 37(3): 300–306.

    Hounslow AW. 1995. Water quality data analysis and interpretation. CRC Press, Boca Raton, CRC Press LLC.

    Kachroud M, Trolard F, Kefi M, et al. 2019. Water quality indices: Challenges and application limits in the literature. Water, 11(2): 361. DOI:10.3390/w1020361.

    Khan A, Qureshi FR. 2018. Groundwater quality assessment through water quality index (WQI) in New Karachi Town, Karachi, Pakistan. Asian Journal Water Environment Pollution, 15(1): 41−46. DOI:10.3233/AJW-180004.

    Kundu A, Kanti Nag, S. 2015. Delineation of groundwater quality for drinking and irrigation purposes: A case study of chhatna block, Bankura District, West Bengal. International Journal of Water Resources Development, 3(1): 5−23.

    Lalaoui M, Allia Z, Chebbah M. 2020. Hydrogeochemical processes and suitability assessment of surface water in the Grouz Dam Basin, northeast Algeria. Journal of Fundamental and Applied Sciences, 12(3): 1452−1474. DOI:10.4314/jfas.v12i3.29.

    Liu F, Song X, Yang L, et al. 2015. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake Basin, Ordos energy base, Northwestern China. Hydrology and Earth System Sciences, 19(1): 551−565. DOI:10.5194/hess-19-551-2015.

    Liu JT, Feng JG, Gao ZJ, et al. 2019. Hydrochemical characteristics and quality assessment of groundwater for drinking and irrigation purposes in the Futuan River Basin, China. Arabian Journal of Geosciences, 12(18): 560. DOI:10.1007/s12517-019-4732-2.

    Long DT, Pearson AL, Voice TC, et al. 2018. Influence of rainy season and land use on drinking water quality in a karst landscape, State of Yucatán, Mexico. Applied Geochemistry, 98(11): 265−277. DOI:10.1016/j.apgeochem.2018.09.020.

    Marco R, Tullia B, Elisa S. et al. 2019. The effects of irrigation on groundwater quality and quantity in a human-modified hydro-system: The Oglio River Basin, Po Plain, northern Italy. Science of the Total Environment, 672: 342−356. DOI:10.1016/j.scitotenv.2019.03.427.

    Maskooni EK, Naseri-Rad M, Berndtsson R. 2020. Use of heavy metal content and modified Water Quality Index to assess groundwater quality in a semiarid area. Water Quality and Contamination, 12(1115).

    Perera TANT, Herath HMMSD, Piyadasa RUK, et al. 2022. Spatial and physicochemical assessment of groundwater quality in the urban coastal region of Sri Lanka. Environmental Science and Pollution Research, 29(11): 16250−16264. DOI:10.1007/s11356-021-16911-x.

    Qasemi M, Farhang M, Biglari H, et al. 2018. Health risk assessments due to nitrate levels in drinking water in villages of Azadshahr, northeastern Iran. Environmental Earth Sciences, 77(23): 782. DOI:10.1007/s12665-018-7973-6.

    RadFard M, Seif M, Ghazizadeh Hashemi AH, et al. 2019. Protocol for the estimation of drinking water quality index (DWQI) in water resources: Artificial neural network (ANFIS) and Arc-Gis. MethodsX, 6: 1021−1029. DOI:10.1016/j.mex.2019.04.027.

    Selvakumar S, Chandrasekar N, Kumar G. 2017. Hydrogeochemical characteristics and groundwater contamination in the rapid urban development areas of Coimbatore, India. Water Resources and Industry, 17: 26−33. DOI:10.1016/j.wri.2017.02.002.

    Shah KA, Joshi GS. 2017. Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7(3): 1349−1358. DOI:10.1007/s13201-015-0318-7.

    Tampo L, Gnazou DTM, Kodom T, et al. 2015 Suitability of groundwater and surface water for drinking and irrigation purpose in Zio River Basin (Togo). Journal of Scientific Research of the University of Lomé (Togo), 17(3): 35-51.

    Tyagi S, Sharma B, Singh P, et al. 2020. Water quality assessment in terms of water quality index. American Journal of Water Resources, 1(3): 34−38. DOI:10.12691/ajwr-1-3-3.

    Villa JM. 1977. Carte géologique de Sétif au 1/200 000. Publication SONATRACH, Algérie : 98. (In French)

    Villa JM. 1980. La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Thèse Docteur ès Sciences. Paris VI, France: 665. (In French)

    Voute C. 1967. Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série, 2 t. Essais de synthèse de l’histoire géologique des environs d’Ain Fakroune, Ain Babouche, et des environs limitrophes. Publ. Serv. Carte géol. Algérie, Nlle Série: 192. (In French)

    WHO 2008. World Health Organisation Guidelines for Drinking Water Quality, Third Editions. 20 Avenue Appia, 1211 Geneva 1227, Switzerland.

    WHO. 2011 World Health Organization Guidelines for Drinking Water Quality, 4rd editions. Incorporating the First and Second ADDENDA, Vol 1. Recommendation, Geneva.

    WHO. 2017. World Health Organization Guidelines for Drinking-water quality, 4rd editions. Incorporating the First addendum, Geneva.

    Yang L, Zhang YP, Wen XR, et al. 2020. Characteristics of groundwater and urban emergency water sources optimazation in Luoyang, China. Journal of Groundwater Science and Engineering, 8(3): 298−304. DOI:10.19637/j.cnki.2305-7068.2020.03.010.

    Yang QC, Li ZJ, Ma HY, et al. 2016. Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos Basin, China. Environmental Pollution, 218: 879−888. DOI:10.1016/j.envpol.2016.08.017.

    Zhang QY, Xu PP, Qian H. 2020. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Exposure and Health, 12(3): 487−500. DOI:10.1007/s12403-020-00345-w.

  • 加载中

(8)

(4)

计量
  • 文章访问数:  752
  • PDF下载数:  27
  • 施引文献:  0
出版历程
收稿日期:  2022-12-17
录用日期:  2023-05-20
网络出版日期:  2024-03-15
刊出日期:  2024-03-15

目录