中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Ghorbaniaghdam Marzie, Khozeymehnezhad Hossein, bilondi Mohsen Pourreza, Ghasemie Hoda. 2025. Application of modified two-point hedging policy in groundwater resources planning in the Kashan Plain Aquifer. Journal of Groundwater Science and Engineering, 13(1): 62-73. doi: 10.26599/JGSE.2025.9280039
Citation: Ghorbaniaghdam Marzie, Khozeymehnezhad Hossein, bilondi Mohsen Pourreza, Ghasemie Hoda. 2025. Application of modified two-point hedging policy in groundwater resources planning in the Kashan Plain Aquifer. Journal of Groundwater Science and Engineering, 13(1): 62-73. doi: 10.26599/JGSE.2025.9280039

Application of modified two-point hedging policy in groundwater resources planning in the Kashan Plain Aquifer

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Table 1.  The number and discharge of groundwater resources (mcm).

    Alluvial aquiferTotal rangeHeightsPlainResource
    DischargeNumberDischargeNumberDischargeNumberDischargeNumber
    239.42961267.36195825.86987241.5971Well
    0027.9026827.9026800Spring
    6.463397.3754088504250.936qanat
    下载: 导出CSV

    Table 2.  Water consumption and its resources by plain and heights areas (mcm).

    Surface water and spring Groundwater (well and qanat)
    Total agriculture Industry Urban Agriculture Industry Urban
    261.13 1.85 0 8.50 268.29 5.37 27.11 Plain
    88.50 26.61 0.21 0.51 51.11 1.16 8.90 Heights
    下载: 导出CSV

    Table 3.  Parameter statistics obtained from transient calibration

    Standard deviation Mean Min Max Parameter
    0.081 0.072 0.0026 0.45 Sy
    29.5 15.73 0.003 139.5 HK (m/d)
    下载: 导出CSV

    Table 4.  Error evaluation criteria for the simulation model.

    ME (m) RMSE (m) bR2 Stage
    0.64 0.34 0.95 Calibration
    0.82 0.41 0.89 Validation
    下载: 导出CSV

    Table 5.  Results of the three groundwater extraction scenarios

    15% decrease in extraction 15% increase in extraction Current extraction trend
    887.6 887.6 887.6 Water table of the first month (2008)
    880.6 875.78 877/81 Water table of the last month (2029)
    −6.9 −11.9 −9.8 Groundwater drop
    下载: 导出CSV

    Table 6.  Decision variables of the modified two-point Hedging

    EWA(MCM) SWA(MCM) HF Month
    207.65 21.2 0.36 October
    180.02 13.06 0.22 November
    134.89 11.32 0.35 December
    101.35 7.89 0.22 January
    95.65 10.94 0.26 February
    104.87 10.97 0.35 March
    115.36 10.69 0.38 April
    139.12 14.08 0.48 May
    150.23 24.56 0.51 June
    208.84 30.21 0.55 July
    211.54 33.47 0.64 August
    133.62 25.76 0.49 September
    下载: 导出CSV

    Table 7.  Performance criteria for supply-demand management using the modified two-point hedging policy

    Sustainability Vulnerability Resilience Reliability Selected Optimal solution
    MSI Drawdown
    51 62 46.06 77.46 3.35 0.31
    下载: 导出CSV

    Table 8.  Comparison between extraction scenarios

    MTPHP(Modify Two Point Hedging Policy) 15% decrease extraction Current trend extraction Extraction scenario
    0/31 0/35 0/45 Groundwater depletion (m/a)
    下载: 导出CSV
  • Ahlfeld DP, Barlow PM, Mulligan AE. 2005. GWM-A ground-water management process for the US Geological Survey modular ground-water model (MODFLOW-2000): 124. Washington DC, USA: US Department of the Interior, US Geological Survey. ‏

    Babel MS, Gupta AD, Nayak DK. 2005. A model for optimal allocation of water to competing demands. Water Resources Management, 19: 693–712. DOI:10.1007/s11269-005-3282-4.

    Bhatia N, Srivastav R, Srinivasan K. 2018. Season-Dependent hedging policies for reservoir operation—A comparison study. Water, 10(10): 1311. DOI:10.3390/w10101311.

    Ketabchi H, Ataie-Ashtiani B. 2015a. Review: Coastal groundwater optimization advances, challenges, and practical solutions. Journal of Hydrology, 23: 1129−1154. DOI:10.1007/s10040-015-1254-1.

    Ketabchi H, Ataie-Ashtiani B. 2015b. Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges. Journal of Hydrology, 520: 193−213. DOI:10.1016/j.jhydrol.2014.11.043.

    Liu Y, Zhao J, Zheng H. 2018. Piecewise-linear hedging rules for reservoir operation with economic and ecologic objectives. Water, 10(7): 865. ‏ DOI:10.3390/w10070865.

    Men B, Wu Z, Liu H, et al. 2019. Research on hedging rules based on water supply priority and benefit loss of water shortage—A case study of Tianjin, China. Water, 11(4): 778. ‏ DOI:10.3390/w11040778.

    Neelakantan TR, Pundarikanthan NV. 2000. Neural network-based simulation-optimization model for reservoir operation. Journal of Water Resources Planning and Management, 126(2): 57–64. DOI:10.1061/(ASCE)0733-9496(2000)126:2(57).

    Nguyen AT, Reiter S, Rigo P. 2014. A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113: 1043−1058. DOI:10.1016/j.apenergy.2013.08.061.

    Sadeghi-Tabas S, Samadi SZ, Akbarpour A, et al. 2017. Sustainable groundwater modeling using single and multi objective optimization algorithms. Journal of Hydroinformatics, 19(1): 97–114. DOI:10.2166/hydro.2016.006.

    Saghi-Jadid M, Ketabchi H. 2020. Result-based management approach for aquifer restoration problems using a combined numerical simulation–parallel evolutionary optimization model. Journal of Hydrology:125709. DOI:10.1016/j.jhydrol.2020.125709.

    Shiau JT. 2011. Analytical optimal hedging with explicit incorporation of reservoir release and carryover storage targets. Water Resources Research, 47(1). DOI:10.1029/2010WR009166.

    Shourian M, Jamshidi J. 2022. Hedging rule-based optimized reservoir operation using metaheuristic algorithms. In E3S Web of Conferences, 346: 02011. EDP Sciences. DOI:10.1051/e3sconf/202234602011.

    Spiliotis M, Mediero L, Garrote L. 2016. Optimization of hedging rules for reservoir operation during droughts based on particle swarm optimization. Water Resources Management, 30: 5759–5778. DOI:10.1007/s11269-016-1285-y.

    Srinivasan K, Kranthi K. 2018. Multi-Objective Simulation-Optimization model for long-term reservoir operation using piecewise linear hedging rule. Water Resource Management, 32: 1901−1911. DOI:10.1007/s11269-018-1911-y.

    UNESCO. 2007. Groundwater Resources Sustainability Indicators.

    Vander Bruggen B, Milis R, Vandecasteele C, et al. 2003. Electrodialysis and nanofiltration of surface water for subsequent use as infiltration water. Water Research, 37(16): 3867−3874. DOI:10.1016/S0043-1354(03)00296-3.

    Yang L, Cheng YP, Wen X-R, et al. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411−427. DOI:10.26599/JGSE.2024.9280031.

    Wang H, Liu J. 2013. Reservoir operation incorporating hedging rules and operational inflow forecasts. Water Resources Management, 27: 1427–1438. DOI:10.1007/s11269-012-0246-3.

    Xu B, Zhong PA, Huang Q, et al. 2017. Optimal hedging rules for water supply reservoir operations under forecast uncertainty and conditional value-at-risk criterion. Water, 9(8): 568. DOI:10.3390/w9080568.

  • 加载中

(9)

(8)

计量
  • 文章访问数:  26
  • PDF下载数:  3
  • 施引文献:  0
出版历程
收稿日期:  2023-05-19
录用日期:  2024-11-25
网络出版日期:  2025-02-20
刊出日期:  2025-03-15

目录