中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Huang Zhao-huan, Huo Zhi-bin, Wang Wei, Zhu Ji-xiang, Zhang Chun-hao, Xi Rui-peng. 2025. Analysis of driving factors for land subsidence in typical cities of the North China Plain based on geodetector technology. Journal of Groundwater Science and Engineering, 13(1): 74-89. doi: 10.26599/JGSE.2025.9280040
Citation: Huang Zhao-huan, Huo Zhi-bin, Wang Wei, Zhu Ji-xiang, Zhang Chun-hao, Xi Rui-peng. 2025. Analysis of driving factors for land subsidence in typical cities of the North China Plain based on geodetector technology. Journal of Groundwater Science and Engineering, 13(1): 74-89. doi: 10.26599/JGSE.2025.9280040

Analysis of driving factors for land subsidence in typical cities of the North China Plain based on geodetector technology

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Table 1.  Description of different driving factors

    Data name Data description Data source

    North China Plain GRACE GWSA spatial distribution

    Using GRACE downscaled results, the GWSA change rate for the North China Plain from 2002 to 2022 was obtained. Spatial resolution: 1 km.

    ——
    Fault scale index

    Based on fault line data, the length of fault lines within a 1 km grid is calculated. Spatial resolution: 1 km.

    ——

    Annual rainfall spatial distribution

    The 2019 monthly precipitation data is accumulated annually. Spatial resolution: 1 km.

    National Earth System Science Data Center

    Evapotranspiration spatial distribution

    Based on the 2019 GLASS and MODIS products, inversion results are used. Spatial resolution: 1 km.

    Spatio-Temporal Environment Big Data Platform

    NDVI spatial distribution Inversion based on 2019 SPOT data. Spatial resolution: 1 km.

    National Earth System Science Data Center

    DEM spatial distribution SRTM3 DEM data, spatial resolution: 90 m. Geospatial Data Cloud

    Building density spatial distribution

    Based on the 2019 land use data for the North China Plain, building land area within a 1 km grid is calculated. Spatial resolution: 1 km.

    Zenodo

    Population spatial distribution

    2019 population spatial distribution data for China, in 1 km grid. Spatial resolution: 1 km.

    Resource and Environment Science

    GDP spatial distribution

    2019 GDP spatial distribution data for China, in 1 km grid. Spatial resolution: 1 km.

    Resource and Environment Science

    下载: 导出CSV
  • Agarwal V, Akyilmaz O, Shum CK, et al. 2023. Machine learning based downscaling of GRACE-estimated groundwater in Central Valley, California. Science of the total Environment, 865: 161138. DOI:10.1016/j.scitotenv.2022.161138.

    An Y, Yang F, Xu J, et al. 2024. Surface deformation analysis and prediction of groundwater changes from joint sar-grace satellite data. IEEE Access, 12: 33671−33686, DOI:10.1109/ACCESS.2024.3368423.

    Bagheri-Gavkosh M, Hosseini SM, Ataie-Ashtiani B, et al. 2021. Land subsidence: A global challenge. Science of the Total Environment, 778(6): 146193. DOI:10.1016/j.scitotenv.2021.146193.

    Berardino P, Fornaro G, Lanari R, et al. 2002. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375−2383. DOI:10.1109/TGRS.2002.803792.

    Cao Q, Zhang Y, Yang L, et al. 2024. Unveiling the driving factors of urban land subsidence in Beijing, China. Science of the Total Environment, 916: 170134. DOI:10.1016/j.scitotenv.2024.170134.

    Huang ZY, Pan Y, Gong HL, et al. 2015. Subregional‐scale groundwater depletion detected by GRACE for both shallow and deep aquifers in North China Plain. Geophysical Research Letters, 42(6): 1791−1799. DOI:10.1002/2014GL062498.

    Gong HL, Pan Y, Zheng LQ, et al. 2018. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeology Journal, 26(5): 1417−1427. DOI:10.1007/s10040-018-1768-4.

    Guo HP, Bai JB, Zhang YQ, et al. 2017. The evolution characteristics and mechanism of the land subsidence in typical areas of the North China Plain. Geology in China, 44(6): 1115−1127. (in Chinese) DOI:10.12029/gc20170606.

    Guo HP, Li WP, Wang LY, et al. 2021. Present situation and research prospects of the land subsidence driven by groundwater levels in the North China Plain. Hydrogeology & Engineering Geology, 48(3): 162−171. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.202012037.

    Khorrami B, Gunduz O. 2021. Evaluation of the temporal variations of groundwater storage and its interactions with climatic variables using GRACE data and hydrological models: A study from Turkey. Hydrological Processes, 35(3): e14076. DOI:10.1002/hyp.14076.

    Lei KC, Luo Y, Chen BB, et al. 2016. Distribution characteristics and influence factors ofland subsidence in Beijing area. Geology in China, 43(6): 2216−2228. (in Chinese) DOI:10.12029/gc20160628.

    Li X, Ye SY, Song F, et al. 2018. Quantitative identification of major factors affecting groundwater change in Beijing-Tianjin-Hebei Plain. Journal of China Hydrology, 38(01): 21−27. (in Chinese) DOI:10.3969/j.issn.1000-0852.2018.01.004.

    Lin JH, Chen WH, Qi XH, et al. 2021. Risk assessment and its influencing factors analysis of geological hazards in typical mountain environment. Journal of Cleaner Production, 309: 127077. DOI:10.1016/j.jclepro.2021.127077.

    Lin M, Biswas A, Bennett EM. 2019. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin. Journal of Environmental Management, 235: 84−95. DOI:10.1016/j.jenvman.2019.01.016.

    Liu HL, Zhang GQ, Zhang DS, et al. 2022. Improving the spatial resolution of GRACE satellites based on high-resolution hydrological simulations. Bulletin of Surveying and Mapping, 0(8): 41−47. (in Chinese) DOI:10.13474/j.cnki.11-2246.2022.0230.

    Liu ZQ, Zhang SW, Fan WJ, et al. 2024. Associations between surface deformation and groundwater storage in different landscape areas of the Loess Plateau, China. Land, 13(2): 184. DOI:10.3390/land13020184.

    Pan Y, Zhang C, Gong HL, et al. 2017. Detection of human-induced evapotranspiration using GRACE satellite observations in the Haihe River basin of China. Geophysical Research Letters, 44(1): 190−199. DOI:10.1002/2016GL071287.

    Peng SZ, Ding YX, Liu WZ, et al. 2019. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth System Science Data, 11(4): 1931−1946. DOI:10.5194/essd-11-1931-2019,2019.

    Peng SZ, Gang CC, Cao Y, et al. 2018. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. International Journal of Climatology, 38(5): 2250−2264. DOI:10.1002/joc.5331.

    Singh L, Saravanan S. 2020. Satellite-derived GRACE groundwater storage variation in complex aquifer system in India. Sustainable Water Resources Management, 6(3): 43. DOI:10.1007/s40899-020-00399-3.

    Sorkhabi OM, Asgari J. 2023. Multi-sensor observations for monitoring groundwater depletion and land subsidence. Journal of Hydrology: Regional Studies, 50: 101529. DOI:10.1016/j.ejrh.2023.101529.

    Su YZ, Guo B, Zhou ZT, et al. 2020. Spatio-temporal variations in groundwater revealed by GRACE and its driving factors in the Huang-Huai-Hai Plain, China. Sensors, 20(3): 922. DOI:10.3390/s20030922.

    Wang JF, Xu CD. 2017. Geodetector: Principle and prospective. Acta Geographica Sinica, 72(1): 116−134. (in Chinese) DOI:10.11821/dlxb201701010.

    Xu CJ, He P, Wen YM, et al. 2015. Recent advances InSAR interferometry and its applications. Journal of Geomatics, 40(2): 1−9. (in Chinese) DOI:10.14188/j.2095-6045.2015.02.001.

    Xue DP, Gui DW, Ci MT, et al. 2024. Spatial and temporal downscaling schemes to reconstruct high-resolution GRACE data: A case study in the Tarim River Basin, Northwest China. Science of the Total Environment, 907: 167908. DOI:10.1016/j.scitotenv.2023.167908.

    Yu W, Gong HL , Chen BB, et al. 2021. Combined GRACE and MT-InSAR to assess the relationship between groundwater storage cchange and land subsidence in the BeijZing-Tianjin-Hebei Region. Remote Sensing, 13(18): 3773. DOI: 10.3390/rs13183773.

    Zhang XY, Ruan YC, Xuan WH, et al. 2023. Risk assessment and spatial regulation on urban ground collapse based on geo-detector: A case study of Hangzhou urban area. NaturalHazards, 118: 525−543. DOI:10.1007/s11069-023-06016-8.

    Zhang Y, Liu YF, Liu Y, et al. 2022. Spatial-temproal variation characteristics and geographic detection mechanism of land subsidence in wuhan city from 2007 to 2019. Geomatics and Information Science of Wuhan University, 47(9): 1486−1497. (in Chinese) DOI:10.13203/j.whugis20210143.

    Zhong YL, Feng W, Zhong M, et al. 2020. Dataset of reconstructed terrestrial water storage in China based on precipitation (2002–2019). A Big Earth Data Platform for ThreePoles. CSTR: 18406.11.Hydro.tpdc.270990. DOI:10.11888/Hydro.tpdc.270990.

  • 加载中

(11)

(1)

计量
  • 文章访问数:  29
  • PDF下载数:  0
  • 施引文献:  0
出版历程
收稿日期:  2024-04-25
录用日期:  2024-12-11
网络出版日期:  2025-02-20
刊出日期:  2025-03-15

目录