中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Hassanpour Mojtaba, Khozeymehnezhad Hossein, Akbarpour Abalfazl. 2025. Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches. Journal of Groundwater Science and Engineering, 13(2): 101-115. doi: 10.26599/JGSE.2025.9280042
Citation: Hassanpour Mojtaba, Khozeymehnezhad Hossein, Akbarpour Abalfazl. 2025. Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches. Journal of Groundwater Science and Engineering, 13(2): 101-115. doi: 10.26599/JGSE.2025.9280042

Presenting and evaluating a new empirical relationship for estimating the rate of infiltration in trenches

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Data obtained from the experiments conducted on the physical model with medium sand and fine sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench volume
    /cm3
    The ratio of
    the depth to
    the
    width of
    the trench
    Qoutmax
    (Lit/Min) (Medium sand)
    Qoutmax
    (Lit/Min) (Fine sand)
    Performance
    (Medium sand)
    (Qout to Qin)
    Performance
    (Fine sand)
    (Qout to Qin)
    1 8 10 6,400 1.25 1.990 0.740 0.905 0.902
    2 8 5 3,200 0.63 1.820 0.640 0.827 0.780
    3 8 7.5 4,800 0.94 1.930 0.688 0.877 0.839
    4 8 12.5 8,000 1.56 2.050 0.775 0.932 0.945
    5 8 15 9,600 1.88 2.140 0.810 0.973 0.988
    6 4 10 3,200 2.5 1.960 0.690 0.891 0.841
    7 6 10 4,800 1.67 1.980 0.720 0.900 0.878
    8 10 10 8,000 1 2.010 0.752 0.914 0.917
    9 12 10 9,600 0.83 2.030 0.770 0.923 0.939
    下载: 导出CSV

    Table 2.  Comparison of observed values of $ {{Q}}_{{out}} $ and calculated values of $ {{Q}}_{{out}} $ using the provided equation for different dimensions of the trench in the physical model with medium sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench
    length
    /cm
    $ \boldsymbol{Q_{out}} $
    (Observational)
    /L/Min
    $ \boldsymbol{Q_{out}} $
    (Computational) /L/Min
    Pearson
    correlation
    (r)
    RMSE
    1 8 10 80 1.990 1.969 0.983 0.073
    2 4 10 80 1.960 1.863
    3 6 10 80 1.980 1.917
    4 10 10 80 2.010 2.019
    5 12 10 80 2.030 2.066
    6 8 5 80 1.820 1.680
    7 8 7.5 80 1.930 1.835
    8 8 12.5 80 2.050 2.089
    9 8 15 80 2.140 2.198
    下载: 导出CSV

    Table 3.  Comparison of observed values of $ {{Q}}_{{out}} $ and calculated values of $ {{Q}}_{{out}} $ using the provided equation for different dimensions of the trench in the physical model with fine sand materials

    Row Trench width
    /cm
    Trench depth
    /cm
    Trench length
    /cm
    $ \boldsymbol{Q_{out}} $ (Observational) /L/Min $ \boldsymbol{Q_{out}} $ (Computational) /L/Min Pearson correlation (r) RMSE
    1 8 10 80 0.740 0.745 0.992 0.012
    2 4 10 80 0.690 0.705
    3 6 10 80 0.720 0.726
    4 10 10 80 0.752 0.764
    5 12 10 80 0.770 0.782
    6 8 5 80 0.640 0.636
    7 8 7.5 80 0.688 0.694
    8 8 12.5 80 0.775 0.791
    9 8 15 80 0.810 0.832
    下载: 导出CSV

    Table 4.  Compares the observed values of leakage from the channel with its calculated values from the given equation

    Row Channel name L/m P/m $ {{D}}{_{50}} $/m Q/m3/d/m2 Observational Q/m3/d/m2 Computational Relative error of the main equation/% Pearson correlation
    (r)
    RMSE
    1 Sharifabad 0.35 2.85 0.0003 1.89 1.62 16 0.981 0.381
    2 Sirian 0.32 3.14 0.0002 1.78 1.36 30
    3 Cichi 0.96 1.04 0.00015 1.96 1.99 −1.5
    4 Nahr Lulham 0.38 2.6 0.0016 5.58 5.02 11
    5 Nahr Sarmast 0.26 3.88 0.0012 3.87 3.24 19
    6 Garkan 1 0.39 2.59 0.00005 0.55 0.55 0
    7 Garkan 2 0.38 2.61 0.00005 0.59 0.55 7
    8 Najafabad 1 0.76 1.32 0.00015 1.12 1.70 −34
    9 Najafabad 2 0.43 2.34 0.00015 0.95 1.18 −19
    下载: 导出CSV
  • Afzali SH, Abedini MJ, Monajemi P. 2009. Simulation of flow in porous media using coupled pressurized-free surface interconnected conduit network 1- network analysis. Iran-Water Resources Research, 5(2): 62–70. (in Persian

    Ali H. 2011. Practices of irrigation & on-farm water management. Springer Science & Business Media, New York, USA, 546. DOI:10.1007/978-1-4419-7637-6.

    Bagarello V, Sferlazza S, Sgroi A. 2009. Testing laboratory methods to determine the anisotropy of saturated hydraulic conductivity in a sandy–loam soil. Geoderma, 154(1): 52–58. DOI:10.1016/j.geoderma.2009.09.012.

    Beckwith C, Baird A, Heathwaite AL. 2003. Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. I: Laboratory measurements. Hydrological Processes, 17(1): 89–101. DOI:10.1002/hyp.1116.

    Cui YL, Li YH, Mao Z, et al. 2004. Strategies for improving the water supply system in HCID, upper reaches of the Yellow River Basin, China. Agricultural Engineering International: The CIGR Journal of Scientific Research and Development. Manuscript LW 02 005.

    Detay M, L Bersillon J. 1996. La réalimentation artificielle des nappes profondes: Faisabilité et conséquences. La Houille Blanche, Revue Internationale De l'eau, 4: 57–61. (in French) DOI:10.1051/lhb/1996040.

    El Mansouri B, El Mezouary L. 2015. Enhan-cement of groundwater potential by aquifer artificial recharge techniques: An adaptation to climate change. Proceedings of the Inter- national Association of Hydrological Sci- ences, 366: 155−156. DOI:10.5194/piahs-366-155-2015.

    Foreman TL. 2014. Managed Aquifer Recharge (MAR) and design and construction of hydraulic barriers against seawater intrusion: The California case. Boletín Geológico y Minero, 125 (2): 133–142.

    Heidarizadeh M, Salemi HR. 2014. Comparison of Wedernikow theoretical method with Ingham empirical method in estimation of seepage from earth channels in Roodasht Region of Isfahan. Agricultural Water Research Journal, 28(4): 703−712. DOI:10.22092/jwra.2015.100825.

    Hiscock KM, Balashova N, Cooper RJ, et al. 2024. Developing Managed Aquifer Recharge (MAR) to augment irrigation water resources in the sand and gravel (Crag) aquifer of coastal Suffolk, UK. Journal of Environmental Management, 35: 119639. DOI:10.1016/j.jenvman.2023.119639.

    Iraq Alavi S. 1993. Management of Zayandeh Rud water distribution based on the estimation of water conveyance efficiency in downstream canals. Isfahan University of Technology, Master's Thesis in Irrigation and Drainage, Department of Irrigation and Drainage, 150.

    Karim I, Abd Ali AM. 2018. Artificial recharge of groundwater by injection wells: A case study. International Journal of Science Engineering and Technology, 6(1): 6193–6196.

    Lhassan MS, Bouabid EL M, Badr B, et al. 2019. Improvement of groundwater resources potential by artificial recharge technique: A case study of Charf El Akab aquifer in the Tangier region, Morocco. Journal of Groundwater Science and Engineering, 7(3): 224−236. DOI:10.19637/j.cnki.2305-7068.2019.03.003shu.

    Li HX, Han SB, Wu X, et al. 2021. Distribution, characteristics and influencing factors of fresh groundwater resources in the Loess Plateau, China. China Geology, 4(3): 509−526. DOI:10.31035/cg2021057.

    Moghazi HEM, Ismail ES. 1997. A study of losses from field channels under arid region conditions. Irrigation Science, 17(3): 105−110. DOI:10.1007/s002710050028.

    Murillo Díaz JM. 2004. Recarga de acuíferos. Evaluación y análisis de condicionantes técnicos y económicos. Acuífero aluvial del Bajo Guadalquivir. Minas. (in Spanish

    Nan T, Shao JL, Cui YL. 2016. Column test-based features analysis of clogging in artificial recharge of groundwater in Beijing. Journal of Groundwater Science and Engineering, 4(2): 88−95. DOI:10.26599/JGSE.2016.9280011.

    Nouri Mohammadieh M, Sohrabi T, Rahimi H. 2010. Evaluation of empirical equations of seepage estimation from earthen canals (Case study: Ghazvin Plain). Iranian Water Research Journal, 4(2): 125–128.

    Pishro F, Morteza Bakhtiari M, Shahni Karamzadeh N. 2017. Laboratory investigation of soil mechanical indices on anisotropic permeability of non-uniform coarse-grained materials: With emphasis on grain size, shape factor and density. Journal of Advanced Applied Geology, Shahid Chamran University of Ahvaz, 7(2): 57–64. (In Persian) DOI:10.22055/aag.2017.21062.1665.

    Pyne RDG. 2005. Aquifer storage and recovery: A guide to groundwater recharge through wells Edition. ISBN 0-9774337-090000.

    Qabadian R, Khalaj M. 2012. Numerical estimating of earth channel seepage in Nzloo Area of Uromye Province and correction of empirical relation constant coefficient. Journal of Water and Soil (Agricultural Sciences and Industries), 26(1): 193−202. DOI:10.22067/jsw.v0i0.13648.

    Rognon P. 2000. Comment développer la recharge artificielle des nappes en régions sèches. Sécheresse, 11(4): 289−296. (in French

    Rostamian R, Abedi Koupai J. 2012. Assessment of SEEP/W Model to estimate seepage from earth canals (Case study: Irrigation Network of Downstream Zayandehrud). JWSS-Isfahan University of Technology, 15 (58) : 13–22.

    Salemi HR, Sepaskhah AR. 2006. Estimation of canal seepage loss in Rudasht Region of Isfahan. Journal of Agricultural and Natural Resources Sciences, 10(2): 42–29.

    Scanlon B, Keese K, Flint A, et al. 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15): 3335–3370. DOI:10.1002/hyp.6335.

    Sebbar A. 2013. Etude de la variabilité et de l'évolution de la pluviométrie au Maroc (1935-2005): Réactualisation de la carte des précipitations. Thèse national, Université Hassan II Mohammedia-Casablanca, Maroc. (in French) DOI:10.13140/2.1.1206.6084.

    Senent-Alonso M. 1984. Problems of the artificial recharge of aquifers. Spanish achievements and their possibilities in the southeast of Spain. Doctoral Thesis, University Polytechnic of Madrid.

    Tavakoli E, Ghorbani B, Samadi Borujeni H, et al. 2017. Modifying empirical equations of seepage estimation using dimensional analysis (Boldaji earth canal, Chaharmahal and Bakhtiari province). Water and Soil Conservation Journal, 6(2): 105–119.

    Zhang G, Lu N, Liu J, et al. 2015. River leakage ratio and leakage amount in the Qaidam Basin. Geological Bulletin of China, 34(11): 2083−2086. (in Chinese)

  • 加载中

(8)

(4)

计量
  • 文章访问数:  29
  • PDF下载数:  10
  • 施引文献:  0
出版历程
收稿日期:  2024-05-12
录用日期:  2024-10-21
网络出版日期:  2025-05-10
刊出日期:  2025-06-30

目录