中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版

Shao Yu-xiang, Zhang Wei, Chen Wen-bin, Chen Li, Li Jian, Tian Guang-long, Quan Li-cheng, Yan Bu-qing, Liu Yu-jie. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132. doi: 10.26599/JGSE.2025.9280043
Citation: Shao Yu-xiang, Zhang Wei, Chen Wen-bin, Chen Li, Li Jian, Tian Guang-long, Quan Li-cheng, Yan Bu-qing, Liu Yu-jie. 2025. Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China. Journal of Groundwater Science and Engineering, 13(2): 116-132. doi: 10.26599/JGSE.2025.9280043

Causes and health risk assessment of fluorine in the Red bed groundwater and adjacent geothermal water of the Guang'an Area, Southwest China

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Table 1.  Parameters for the calculation of the HRA model in this study

    Parameters C IR EF ED BW AT RfD
    Unit mg·L−1 L·d−1 d·a−1 a kg d mg·kg−1·d−1
    Adult Measured 3 120 30 57 EF×ED 0.06
    Children Measured 1.5 30 6 26 EF×ED 0.06
    下载: 导出CSV

    Table 2.  Contents of major chemical compositions and fluoride in the different types of groundwater

    Sample type pH TDS Na+ K+ Ca2+ Mg2+ Cl SO42− HCO3 NO3 F Data source
    Limit 6.5–8.5 1,000 200 - - - 250 250 - 20 1.0

    (GB/T 14848–2017)

    Red beds(n=68)

    Min 6.30 146 5.0 0.63 8.79 1.63 0.66 6.30 26.00 0.7 0.08 This study
    Max 9.19 2,520 635.0 50.40 220.00 45.80 1,030.00 520.00 511.00 186.0 3.76
    Ave 7.34 482 58.0 4.60 80.97 16.38 58.58 69.47 280.35 29.3 0.58
    SD 0.49 319 91.6 7.85 39.39 8.22 140.42 76.87 114.91 33.5 0.74
    CV 0.07 0.66 1.6 1.71 0.49 0.50 2.40 1.11 0.41 1.14 1.27
    % > Limit 4 3 4 - - - 4 3 - 46 9

    Geothermal water (n=17)

    Min 6.45 448 2.4 1.88 226.00 43.90 1.35 335.00 91.53 - 0.10

    (Li et al. 2020; Xiao et al. 2011)

    Max 7.69 1,512 355.0 37.30 817.00 178.00 70.89 2,114.00 317.30 - 14.71
    Ave 7.14 808 41.6 14.91 556.86 112.87 18.45 1,429.56 188.35 - 7.62
    SD 0.32 274 78.49 10.78 216.55 46.46 14.95 638.32 51.84 - 5.35
    CV 0.04 0.34 1.89 0.72 0.39 0.41 0.81 0.45 0.28 - 0.70
    % > Limit 6 18 6 - - - 0 100 - - 94 -
    Note: The units for ion and TDS concentrations are mg·L−1. CV is the coefficient of variation, %. pH, dimensionless.
    下载: 导出CSV

    Table 3.  F contents in the various rocks of the study area/(mg·kg−1)

    Rock type Marl (n=2) Limestone (n=6) Mudstone (n=8) Carbonaceous mudstone (n=3) Siltstone (n=3) Sandstone (n=4) Basalt (n=1) All samples (n=27)
    Min 767 200 598 542 645 408 645 200
    Max 767 476 854 767 767 476 645 854
    Ave 767 365 722 671 705 432 645 593
    SD - 122 80 116 61 30 - 178

    Average value of continental crust (Wedepohl, 1995)

    525
    下载: 导出CSV

    Table 4.  Statistics of groundwater mineral saturation indices in the study area

    Mineral category Calcite
    (CaCO3)
    Fluorite
    (CaF2)
    Gypsum
    (CaSO4·2H2O)
    Halite
    (NaCl)
    Sylvite
    (KCl)
    Geothermal water (n=17) Max 1.00 1.80 0.09 −6.72 −7.23
    Min −0.27 −2.66 −0.82 −10.12 −9.65
    Ave 0.40 0.78 −0.13 −8.28 −8.11
    Red beds (n=68) Low F level (n=62) Max 1.18 −1.03 −0.81 −6.66 −6.48
    Min −1.88 −4.00 −3.08 −9.48 −9.90
    Ave 0.03 −2.00 −1.91 −7.67 −8.33
    High F level (n=6) Max 0.38 0.24 −0.76 −4.84 −7.05
    Min −0.69 −0.96 −2.00 −8.59 −8.94
    Ave 0.04 −0.37 −1.55 −6.31 −7.92
    下载: 导出CSV
  • Aghapour S, Bina B, Tarrahi MJ, et al. 2018. Distribution and health risk assessment of natural fluoride of drinking groundwater resources of Isfahan, Iran, using GIS. Environmental Monitoring and Assessment, 190: 137. DOI:10.1007/s10661-018-6467-z.

    Ali S, Thakur SK, Sarkar A, et al. 2016. Worldwide contamination of water by fluoride. Environmental Chemistry Letters, 14(3): 563−568. DOI:10.1007/s10311-016-0563-5.

    Chae GT, Yun ST, Mayer B, et al. 2007. Fluorine geochemistry in bedrock groundwater of South Korea. Science of the Total Environment, 385(1-3): 272−283. DOI:10.1016/j.scitotenv.2007.06.038.

    Chen JN, Mao XG, Shi YH, et al. 2020. Study on the late Cretaceous paleoenvironment documented by red beds in the western Fujian province. Chinese Journal of Geophysics, 63(4): 1553−1568. DOI:10.6038/cjg2020N0375.

    Dey RK, Swain SK, Mishra S, et al. 2012. Hydrogeochemical processes controlling the high fluoride concentration in groundwater: A case study at the Boden block area, Orissa, India. Environmental Monitoring and Assessment, 184(5): 3279−3291. DOI:10.1007/s10661-011-2188-2.

    Dong JX, Sun D, Wei LS, et al. 2021. Discussion on the development regularity of salt water in red beds in the southern margin of Sichuan Basin. Geological Bulletin of China, 40(8): 1394−1401. (in Chinese)

    Duan X. 2015. Highlights of the Chinese exposure factors handbook (adults). Academic Press. (in Chinese)

    Durrani TS, Farooqi A. 2021. Groundwater fluoride concentrations in the watershed sedimentary basin of Quetta Valley, Pakistan. Environmental monitoring and assessment, 193(10): 644. DOI:10.1007/s10661-021-09365-8.

    Feng F, Jia YF, Yang Y, et al. 2020. Hydrogeochemical and statistical analysis of high fluoride groundwater in northern China. Environmental Science and Pollution Research, 27(28): 34840−34861. DOI:10.1007/s11356-020-09784-z.

    Gao ZJ, Zhu ZH, Liu XD, et al. 2014. The formation and model of high fluoride groundwater and in-situ dispelling fluoride assumption in Gaomi City of Shandong Province. Journal of Groundwater Science and Engineering, 2(2): 34−39. DOI:10.26599/JGSE.2014.9280016.

    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI:10.1126/science.170.3962.1088.

    Güler C, Thyne GD. 2004. Delineation of hydrochemical facies distribution in a regional groundwater system by means of fuzzy c-means clustering. Water Resources Research, 40(12): W12503. DOI:10.1029/2004wr003299.

    Hao AB, Zhang YL, Zhang EY, et al. 2018. Review: Groundwater resources and related environmental issues in China. Hydrogeology Journal, 26(5): 1325−1337. DOI:10.1007/s10040-018-1787-1.

    He XD, Li PY, Ji YJ, et al. 2020. Groundwater Arsenic and Fluoride and Associated Arsenicosis and Fluorosis in China: Occurrence, Distribution and Management. Exposure and Health, 12(3): 355−368. DOI:10.1007/s12403-020-00347-8.

    Jacks G, Bhattacharya P, Chaudhary V, et al. 2005. Controls on the genesis of some high-fluoride groundwaters in India. Applied Geochemistry, 20(2): 221−228. DOI:10.1016/j.apgeochem.2004.07.002.

    Jia H, Qian H, Qu W, et al. 2019. Fluoride occurrence and human health risk in drinking water wells from southern edge of Chinese Loess Plateau. International Journal of Environmental Research and Public Health, 16(10): 1683−1695. DOI:10.3390/ijerph16101683.

    Kammoun A, Abidi M, Zairi M. 2022. Hydrochemical characteristics and groundwater quality assessment for irrigation and drinking purposes: A case of Enfidha aquifer system, Tunisia. Environmental Earth Sciences, 81(41): 1−10. DOI:10.1007/s12665-021-10163-1.

    Khatri N, Tyagi S. 2015. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science, 8(1): 23−39. DOI:10.1080/21553769.2014.933716.

    Kumar M, Goswami R, Patel AK, et al. 2020. Scenario, perspectives and mechanism of arsenic and fluoride Co-occurrence in the groundwater: A review. Chemosphere, 249(12): 2−20. DOI:10.1016/j.chemosphere.2020.126126.

    Lan FN, Zhao Y, Li J, et al. 2024. Health risk assessment of heavy metal pollution in groundwater of a karst basin, SW China. Journal of Groundwater Science and Engineering, 12(1): 49−61. DOI:10.26599/jgse.2024.9280005.

    Lei FH, Liu CZ. 2022. Report of geochemical survey of land quality in Guang'an City: Chengdu Geological Survey Center, China Geological Survey. (in Chinese)

    Li CC, Gao XB, Wang YX. 2015. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China. Science of the Total Environment, 508(1): 155−165. DOI:10.1016/j.scitotenv.2014.11.045.

    Li MH, Yuan JF, Huang CJ, et al. 2020. A study of the characteristics of geothermal reservoir and genesis of thermal groundwater in the Tongluoshan anticline near Guang'an in east Sichuan. Hydrogeology & Engineering Geology, 47(6): 36−46. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.202008038.

    Lia Q, Tao HF, Aihemaiti M, et al. 2021. Spatial distribution characteristics and enrichment factors of high-fluorine groundwater in the Kuitun River Basin of Xinjiang Uygur Autonomous Region in China. Desalination and Water Treatment, 223: 208−217. DOI:10.5004/dwt.2021.27138.

    Liu RP, Liu F, Chen HQ, et al. 2024. Arsenic and fluoride co-enrichment of groundwater in the loess areas and associated human health risks: A case study of Dali County in the Guanzhong Basin. China Geology, 7(3): 445−459. DOI:10.31035/cg2024015.

    Liu RP, Zhu H, Liu F, et al. 2021. Current situation and human health risk assessment of fluoride enrichment in groundwater in the Loess Plateau: A case study of Dali County, Shaanxi Province, China. China Geology, 4(3): 487−497. DOI:10.31035/cg2021051.

    Lyu XL, Liu JT, Zhou B, et al. 2021. Distribution characteristics and enrichment mechanism of fluoride in the shallow aquifer of the Tacheng Basin. Earth Science Frontiers, 28(2): 426−436. (in Chinese) DOI:10.13745/j.esf.sf.2020.10.29.

    Luo JL. 2020. Regional distribution characteristies and genesis analysis of fluorinecontent in groundwater in South Jiangxi. Mineral Resources and Geology, 34(3): 590−595. (in Chinese) DOI:10.19856/j.cnki.issn.1001-5663.2020.03.026.

    Mao RY, Cuo HM, Jia YF. 2016. Distribution characteristics and genesis of fluoride groundwater in the Hetao basin, Inner Mongolia. Earth Science Frontiers, 23(2): 260−268. (in Chinese) DOI:10.13745/j.esf.2016.02.024.

    Piper M. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Transactions-American Geophysical Union, 25(6): 914−923. DOI:10.1029/TR025i006p00914.

    Podgorski J, Berg M. 2022. Global analysis and prediction of fluoride in groundwater. Nature Communications, 13(1): 4232. DOI:10.1038/s41467-022-31940-x.

    Qian LJ, Chen HD, Lin LB, et al. 2012. Geochemical characteristics and environmental implications of Middle Jurassic Shaximiao Formation, western margin of Sichuan Basin. Acta Sedimentologica Sinica, 30(6): 1061−1071. (in Chinese) DOI:10.14027/j.cnki.cjxb.2012.06.020.

    Schoeller H. 1967. Qualitative evaluation of groundwater resources. In methods and technics of groundwater investigation and development. Water Research, 33: 44−52.

    Sheldon ND. 2005. Do red beds indicate paleoclimatic conditions? A Permian case study. Palaeogeography, Palaeoclimatology, Palaeoecology, 228(3-4): 305–319. DOI:10.1016/j.palaeo.2005.06.009.

    Sikdar PK, Sarkar SS, Palchoudhury S. 2001. Geochemical evolution of groundwater in the Quaternary aquifer of Calcutta and Howrah, India. Journal of Asian Earth Sciences, 19(5): 579−594. DOI:10.1016/s1367-9120(00)00056-0.

    Silva GM, Liang X, Kontogeorgis GM. 2022. On the derivations of the Debye–Hückel equations. Molecular Physics, 120(10): 1−22. DOI:10.1080/00268976.2022.2064353.

    Su H, Kang WD, Kang N, et al. 2021. Hydrogeochemistry and health hazards of fluoride-enriched groundwater in the Tarim Basin, China. Environmental Research, 200(3): 111−130. DOI:10.1016/j.envres.2021.111476.

    USEPA. 1987. Integrated Risk Information System, Chemical Assessment Summary, Fluorine (soluble fluoride); CASRN 7782-41-4. Available on https://iris.epa.gov/static/pdfs/0053_summary.pdf.

    Wedepohl KH. 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7): 1217−1232. DOI:10.1016/0016-7037(95)00038-2.

    Wen DG, Zhang FC, Zhang EY, et al. 2013. Arsenic, fluoride and iodine in groundwater of China (Review). Journal of Geochemical Exploration, 135: 1−21. DOI:10.1016/j.gexplo.2013.10.012.

    Xiao J, Zhang F, Jin ZD. 2016. Spatial characteristics and controlling factors of chemical weathering of loess in the dry season in the middle Loess Plateau, China. Hydrological Processes, 30(25): 4855−4869. DOI:10.1002/hyp.10959.

    Xiao Q, Shen LC, Yuan DX, et al. 2011. Using δ18O and δ34S isotopic techniques to trace the recycling process of hot springs in Chongqing metropolitan. Journal of Chongqing University, 34(5): 89−94. (in Chinese) DOI:10.11835/j.issn.1000-582X.2011.05.016.

    Xie YX, Tan KO, Zuo ZH. 1981. Report on the hydrogeological survey of the Guang'an amplitude region: Nanjiang Hydrogeological Brigade of Sichuan Geological Bureau. (in Chinese)

    Xing SP, Wu P, Hu XD, et al. 2023. Ceochemical characteristics of aquifer sediments and their influence on fluoride enrichment in groundwater in the Hualong-Xunhua Basin. Earth Science Frontiers, 30(2): 526−538. (in Chinese) DOI:10.13745/j.esf.sf.2022.9.10.

    Yan ZX, Feng MG. 2022. Hydrochemical characteristics and driving factors of surface water in the mining area of Changhe River Basin. Environmental Chemistry, 41(2): 632−642. (in Chinese) DOI:10.7524/j.issn.0254-6108.2020101505.

    Zhang LQ, Dong DL, Lv S, et al. 2023. Spatial evolution analysis of groundwater chemistry, quality, and fluoride health risk in southern Hebei Plain, China. Environmental Science and Pollution Research, 30(21): 32−51. DOI:10.1007/s11356-023-26316-7.

    Zhang MH, Zhou SY, Liu DD, et al. 2024. Characteristics and genesis of groundwater salinization in coastal areas of the Lower Reaches of Oujiang Basin. Journal of Groundwater Science and Engineering, 12(2): 190−204. DOI:10.26599/jgse.2024.9280015.

    Zhang W, Hao CM, Lin DJ, et al. 2021. Study on the fluorine distribution and formation of high fluorine middle-level groundwater in Sulin mining area, Anhui. Environmental Pollution and Control, 43(8): 1022−1027. (in Chinese) DOI:10.15985/j.cnki.1001-3865.2021.08.017.

    Zhang YT, Wu JH, Xu B. 2018. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environmental Earth Sciences, 77(7): 1. DOI:10.1007/s12665-018-7456-9.

    Zhang ZX, Xu M, Zhang Q, et al. 2018. Hydrogeochemistry, genesis and water quality analysis of shallow groundwater in red-bed area of the Mianyang city. Science Technology and Engineering, 18(3): 168−173. (in Chinese)

    Zhao X, Duan X, Wang B, et al. 2016. Environmental exposure related activity patterns survey of Chinese population (Children). China: Beijing: China Environmental Science Press. (in Chinese)

    Zhou YZ, Zeng YY, Zhou JL, et al. 2016. Distribution of groundwater arsenic in Xinjiang, P. R. China. Applied Geochemistry, 77(2): 116−125. DOI:10.1016/j.apgeochem.2016.09.005.

    Zhu YP, Su CL, Liang C, et al. 2015. Effects of sediment lithology and groundwater hydrochemical characteristics on fluorine transport at water soil interface. Geological Science and Technology Information, 34(5): 160−165. (in Chinese)

  • 加载中

(11)

(4)

计量
  • 文章访问数:  155
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-04-28
录用日期:  2025-03-21
网络出版日期:  2025-05-10
刊出日期:  2025-06-30

目录