Finite analytic method for simulating water flow using water content-based Richards' equation
-
Abstract:
Accurately simulating water flow movement in vadose zone is crucial for effective water resources assessment. Richards' equation, which describes the movement of water flow in the vadose zone, is highly nonlinear and challenging to solve. Existing numerical methods often face issues such as numerical dispersion, oscillation, and mass non-conservation when spatial and temporal discretization conditions are not appropriately configured. To address these problems and achieve accurate and stable numerical solutions, a finite analytic method based on water content-based Richards' equation (FAM-W) is proposed. The performance of the FAM-W is compared with analytical solutions, Finite Difference Method (FDM), and Finite Analytic Method based on the pressure Head-based Richards' equation (FAM-H). Compared to analytical solution and other numerical methods (FDM and FAM-H), FAM-W demonstrates superior accuracy and efficiency in controlling mass balance errors, regardless of spatial step sizes. This study introduces a novel approach for modelling water flow in the vadose zone, offering significant benefits for water resources management.
-
-
Berardi M, Difonzo FV. 2022. A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards' equation. Journal of Computational Dynamics, 9: 69−84. DOI:10.3934/jcd.2022001.
Berardi M, Difonzo FV, Guglielmi R. 2023a. A preliminary model for optimal control of moisture content in unsaturated soils. Computational Geosciences, 27: 1133−1144. DOI:10.1007/s10596-023-10250-1.
Berardi M, Difonzo FV, Pellegrino SF. 2023b. A numerical method for a nonlocal form of Richards' equation based on peridynamic theory. Computers & Mathematics with Applications, 143: 23−32. DOI:10.1016/j.camwa.2023.04.032.
Celia MA, Bouloutas ET, Zarba RL. 1990. A general mass‐conservative numerical solution for the unsaturated flow equation. Water resources research, 26: 1483−1496. DOI:10.1029/WR026i007p01483.
Chen CJ, Chen HC. 1984. Finite analytic numerical method for unsteady two-dimensional Navier-Stokes equations. Journal of Computational Physics, 53: 209−226. DOI:10.1016/0021-9991(84)90038-X.
Civan F. 2009. Practical finite-analytic method for solving differential equations by compact numerical schemes. Numerical Methods for Partial Differential Equations, 25: 347−379. DOI:10.1002/num.20346.
Gardner W. 1958. Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil Science, 85: 228−232. DOI:10.1097/00010694-195804000-00006.
Gottardi G, Venutelli M. 1993. Richards: Computer program for the numerical simulation of one-dimensional infiltration into unsaturated soil. Computers & Geosciences, 19: 1239−1266. DOI:10.1016/0098-3004(93)90028-4.
Haverkamp R, Debionne S, Angulo-Jaramillo R, et al. 2016. Soil properties and moisture movement in the unsaturated zone. In "The handbook of groundwater engineering", 167-208. CRC Press. DOI:10.1201/9781420006001.
Kirkland MR, Hills R, Wierenga P. 1992. Algorithms for solving Richards' equation for variably saturated soils. Water Resources Research, 28: 2049−2058. DOI:10.1029/92WR00802.
Kumar R, Tiwari R, Prasad R. 2023. Numerical solution of partial differential equations: Finite difference method. Mathematics and Computer Science, 1: 353−372. DOI: 10.1007/978-1-4899-7278-1.
Li M, Li J, Singh VP, et al. 2019. Efficient allocation of agricultural land and water resources for soil environment protection using a mixed optimization-simulation approach under uncertainty. Geoderma, 353: 55−69. DOI:10.1016/j.geoderma.2019.06.023.
Ren S, ZhangY, Jim Yeh TC, et al. 2021. Multiscale hydraulic conductivity characterization in a fractured granitic aquifer: The evaluation of scale effect. Water Resources Research, 57: e2020WR028482. DOI:10.1029/2020WR028482.
Shen C, Phanikumar MS. 2010. A process-based, distributed hydrologic model based on a large-scale method for surface–subsurface coupling. Advances in Water Resources, 33: 1524−1541. DOI:10.1016/j.advwatres.2010.09.002.
Srivastava R, Yeh TCJ. 1991. Analytical solutions for one‐dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resources Research, 27: 753−762. DOI:10.1029/90WR02772.
Suk H, Park E. 2019. Numerical solution of the Kirchhoff-transformed Richards equation for simulating variably saturated flow in heterogeneous layered porous media. Journal of Hydrology, 579: 124213. DOI:10.1016/j.jhydrol.2019.124213.
Sun Y, Li D, Jiao L, et al. 2024. Simulation of saturated–unsaturated seepage problems via the virtual element method. Computers and Geotechnics, 171: 106326. DOI:10.1016/j.compgeo.2024.106326.
Szymkiewicz A. 2009. Approximation of internodal conductivities in numerical simulation of one‐dimensional infiltration, drainage, and capillary rise in unsaturated soils. Water Resources Research, 45(10): W10403. DOI:10.1029/2008WR007654.
Timsina RC. 2024. Infiltration-Induced landslide: An application of richards equation. Journal of Nepal Mathematical Society, 7: 86−99. DOI:10.3126/jnms.v7i1.67490.
Tsai WF, Chen CJ, Tien HC. 1993. Finite analytic numerical solutions for unsaturated flow with irregular boundaries. Journal of Hydraulic Engineering, 119: 1274−1298. DOI:10.1061/(ASCE)0733-9429(1993)119:11(1274).
Tu MC, Wadzuk B, Traver R. 2020. Methodology to simulate unsaturated zone hydrology in Storm Water Management Model (SWMM) for green infrastructure design and evaluation. PLoS One, 15: e0235528. DOI:10.1371/journal.pone.0235528.
Vereecken H, Amelung W, Bauke SL, et al. 2022. Soil hydrology in the Earth system. Nature Reviews Earth & Environment, 3: 573−587. DOI:10.1038/s43017-022-00324-6.
Wang YL, Yeh TCJ, Wen JC, et al. 2019. Resolution and ergodicity issues of river stage tomography with different excitations. Water Resources Research, 55: 4974−4993. DOI:10.1029/2018WR023204.
Wang YL, Yeh TCJ, Xu D, et al. 2021. Stochastic analysis of oscillatory hydraulic tomography. Journal of Hydrology, 596: 126105. DOI:10.1016/j.jhydrol.2021.126105.
Younes A, Koohbor B, Belfort B, et al. 2022. Modeling variable-density flow in saturated-unsaturated porous media: An advanced numerical model. Advances in Water Resources, 159: 104077. DOI:10.1016/j.advwatres.2021.104077.
Zeng J, Zha Y, Yang J. 2018. Switching the Richards' equation for modeling soil water movement under unfavorable conditions. Journal of Hydrology, 563: 942−949. DOI:10.1016/j.jhydrol.2018.06.069.
Zeng X, Decker M. 2009. Improving the numerical solution of soil moisture–based Richards equation for land models with a deep or shallow water table. Journal of Hydrometeorology, 10: 308−319. DOI:10.1175/2008JHM1011.1.
Zha Y, Shi L, Ye M, et al. 2013. A generalized Ross method for two-and three-dimensional variably saturated flow. Advances in water resources, 54: 67−77. DOI:10.1016/j.advwatres.2013.01.002.
Zha Y, Yang J, Yin L, et al. 2017. A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil. Journal of hydrology, 551: 56−69. DOI:10.1016/j.jhydrol.2017.05.053.
Zha Y, Yang J, Zeng J, et al. 2019. Review of numerical solution of Richardson–Richards equation for variably saturated flow in soils. Wiley Interdisciplinary Reviews: Water, 6: e1364. DOI:10.1002/wat2.1364.
Zhang Z, Wang W, Chen L, et al. 2015. Finite analytic method for solving the unsaturated flow equation. Vadose Zone Journal, 14: 1-10. DOI: 10.2136/vzj2014.06.0073.
Zhang Z, Wang W, Gong C, et al. 2020. Finite analytic method: Analysis of one-dimensional vertical unsaturated flow in layered soils. Journal of Hydrology, 597: 125716. DOI: 10.1016/j.jhydrol.2020.125716.
Zhang Z, Wang W, Gong C, et al. 2018. Finite analytic method for modeling variably saturated flows. Science of the Total Environment, 621: 1151−1162. DOI:10.1016/j.scitotenv.2017.10.112.
Zhang Z, Wang W, Lu Y. 2021. Improved finite analytic method to simulate soil water movement in vadose zones. Transactions of the Chinese Society of Agricultural Engineering, 37: 55−61. DOI:10.11975/j.issn.1002-6819.2021.18.007.
Zhang Z, Wang W, Yeh TCJ, et al. 2016. Finite analytic method based on mixed-form Richards' equation for simulating water flow in vadose zone. Journal of Hydrology, 537: 146−156. DOI:10.1016/j.jhydrol.2016.03.035.
-