Analysis of spatiotemporal evolution characteristics and driving factors of carbon storage in Dongting Lake Wetland, China
-
Abstract:
Lake wetlands play a crucial role as global carbon sinks, significantly contributing to carbon storage and ecological balance. This study estimates the quarterly carbon storage in the Dongting Lake wetland for the years 2010, 2015, and 2020, using MODIS remote sensing imagery and the InVEST model. A Structural Equation Model (SEM) was then employed to analyze the driving factors behind changes in carbon storage. Results show that intra-annual carbon storage increases and then decreases, with maximum level in the third quarter (average of 34.242 Tg) and a minimum one in the first quarter (average of 21.435 Tg). From 2010 to 2020, inter-annual carbon storage variations initially exhibited an increasing trend before decreasing, with the peak annual average carbon storage reaching 32.230 Tg in 2015. Notably, the coefficient of variation for intra-annual carbon storage increased from 8.5% in 2010 to 25.8% in 2020. Key driving factors that influence carbon storage changes include surface solar radiation, temperature, and water level, with carbon storage positively correlated with surface solar radiation and temperature, and negatively correlated with water level. These findings reveal the spatiotemporal evolution characteristics of carbon storage in the Dongting Lake wetland, offering scientific guidance for wetland conservation and regional climate adaptation policies.
-
Key words:
- Lake wetland /
- Carbon storage /
- Dynamic evolution /
- Climate-hydrological drivers /
- Dongting Lake
-
-
Table 1. Carbon storage sources of land use/cover types
Carbon storage types Sources of carbon storage Surface biomass carbon storage All living vegetation above the ground surface Underground biomass carbon storage Underground living root systems Soil organic carbon storage Organic carbon in mineral and organic soils Litter carbon storage Litter, standing or fallen deadwood Table 2. The carbon density of various cover types in the research area (unit: Mg C/km2) (Cited from An et al. 2022)
Types $ {\mathit{C}}_{\mathit{a}\mathit{b}\mathit{o}\mathit{v}\mathit{e}} $ $ {\mathit{C}}_{\mathit{b}\mathit{e}\mathit{l}\mathit{o}\mathit{w}} $ $ {\mathit{C}}_{\mathit{s}\mathit{o}\mathit{i}\mathit{l}} $ $ {\mathit{C}}_{\mathit{d}\mathit{e}\mathit{a}\mathit{d}} $ Water 0 0 0 0 Mudflat 1 1 0.99 0 Sedge marsh 0.82 0.87 89 1 Reed marsh 6 6 20 0 Woodland 64.2 118 207.3 3.5 -
An XX, Jin WP, Long XG, et al. 2022. Spatial and temporal evolution of carbon stocks in Dongting Lake wetlands based on remote sensing data. Geocarto International, 37: 14983−15009. DOI:10.1080/10106049.2022.2093412.
Babbar D, Areendran G, Sahana M, et al. 2021. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. Journal of Cleaner Production, 278: 123333. DOI: 10.1016/j.jclepro.2020.123333.
Chen B, Chen L F, Huang B, et al. 2018. Dynamic monitoring of the Poyang Lake wetland by integrating Landsat and MODIS observations. Isprs Journal of Photogrammetry and Remote Sensing, 139: 75−87. DOI:10.1016/j.isprsjprs.2018.02.021.
Chen D, Lan Z, Hu S, et al. 2015. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biology and Biochemistry, 89: 99−108. DOI:10.1016/j.soilbio.2015.06.028.
Chirici G, Barbati A, Maselli F 2007. Modelling of Italian forest net primary productivity by the integration of remotely sensed and GIS data. Forest Ecology and Management, 246: 285−295. DOI:10.1016/j.foreco.2007.04.033.
Dar SA, Rashid I, Bhat SU. 2021. Land system transformations govern the trophic status of an urban wetland ecosystem: Perspectives from remote sensing and water quality analysis. Land Degradation & Development, 32: 4087−4104. DOI: 10.1002/ldr.3924.
Das M, Nath P, Reang D, et al. 2020. Tree diversity and the improved estimate of carbon storage for traditional agroforestry systems in North East India. Applied Ecology and Environmental Sciences, 8: 154−159. DOI:10.12691/aees-8-4-2.
De'ath G, Fabricius KE. 2000. Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81: 3178−3192. DOI:10.2307/177409.
Debanshi S, Pal S. 2020. Wetland delineation simulation and prediction in deltaic landscape. Ecological Indicators, 108: 105757. DOI: 10.1016/j.ecolind.2019.105757.
Deng YW, Jiang WG, Wu ZF, et al. 2022. Assessing and characterizing carbon storage in wetlands of the Guangdong-Hong Kong-Macau Greater Bay Area, China, during 1995-2020. IEEE Journal of Selected Topics In Applied Earth Observations And Remote Sensing, 15: 6110−6120. DOI:10.1109/jstars.2022.3192267.
Ding Y, Wang LZ, Gui F, et al. 2023. Ecosystem carbon storage in Hangzhou Bay Area based on InVEST and PLUS Models. Environmental Science, 44: 3343−3352. (in Chinese). DOI:10.13227/j.hjkx.202204080.
Donato DC, Kauffman JB, Murdiyarso D, et al. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4: 293−297. DOI:10.1038/ngeo1123.
Gao F, Masek J, Schwaller M, et al. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. Ieee Transactions on Geoscience and Remote Sensing, 44: 2207−2218. DOI:10.1109/tgrs.2006.872081.
Gorham E. 1991. Northern Peatlands - Role in the carbon-cycle and probable responses to climatic warming. Ecological Applications, 1: 182−195. DOI:10.2307/1941811.
Gu CX, Ou GL, Liu C, et al. 2024. Dynamic prediction of carbon storage in Pinus kesiya var. langbianensis Forest. Journal of Southwest Forestry University, 44: 150−157. (in Chinese) DOI:10.11929/j.swfu.202309043.
Hou YL, Wang LX, Li ZW, et al. 2024. Landscape fragmentation and regularity lead to decreased carbon stocks in basins: Evidence from century-scale research. Journal of Environmental Management, 367. DOI:10.1016/j.jenvman.2024.121937.
Hu L, Li Q, Yan JH, et al. 2022. Vegetation restoration facilitates belowground microbial network complexity and recalcitrant soil organic carbon storage in southwest China karst region. Science of the Total Environment, 820: 153137. DOI:10.1016/j.scitotenv.2022.153137.
Hunan Provincial Local Chronicle Compilation Committee, Dongting Lake Chronicle. 2016. Changsha: Hunan People's Publishing House.
Iverson L, Brown S, Grainger A, et al. 1993. Carbon sequestration in tropical Asia: An assessment of technically suitable forest lands using geographic information systems analysis. Climate Research - Climate Research, 3: 23−38. DOI:10.3354/cr003023.
Ji H, Han JG, Xue J M, et al. 2020. Soil organic carbon pool and chemical composition under different types of land use in wetland: Implication for carbon sequestration in wetlands. Science of the Total Environment, 716: 136996. DOI:10.1016/j.scitotenv.2020.136996.
Jia YL, Li QR, Xu ZQ, et al. 2016. Carbon cycle of larch plantation based on CO2FIX model. Chinese Journal of Plant Ecology, 40: 405–415. (in Chinese) DOI:10.17521/cjpe.2015.0208.
Laiho R. 2006. Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology & Biochemistry, 38: 2011–2024. DOI:10.1016/j.soilbio.2006.02.017.
Li J, Wang J, Li L, et al. 2022. Impact of land use change on carbon storage in the Dongting Lake Eco-economic Zone. Chinese Journal of Ecology, 41: 1156−1165. (in Chinese) DOI:10.13292/j.1000-4890.202206.026.
Li KY, Wang XM, Zhao F, et al. 2024a. Land use modeling and carbon storage projections of the Bosten Lake Basin in China from 1990 to 2050 across multiple scenarios. Scientific Reports, 14(1): 27136. DOI: 10.1038/s41598-024-78693-9.
Li L, Wang X, Yang YL, et al. 2024b. The response mechanism of the cbbM xarbon sequestration microbial community in the Alpine Wetlands of Qinghai Lake to changes in precipitation. Biology-Basel, 13(12): 1090. DOI: 10.3390/biology13121090.
Liddle B. 2014. Impact of population, age structure, and urbanization on carbon emissions/energy consumption: Evidence from macro-level, cross-country analyses. Population and Environment, 35: 286−304. DOI:10.1007/s11111-013-0198-4.
Lin SW, Li XZ, Yang B, et al. 2021. Systematic assessments of tidal wetlands loss and degradation in Shanghai, China: From the perspectives of area, composition and quality. Global Ecology and Conservation, 25: e01450. DOI:10.1016/j.gecco.2020.e01450.
Liu XP, Wang SJ, Wu PJ, et al. 2019. Impacts of urban expansion on terrestrial carbon storage in China. Environmental Science & Technology, 53: 6834−6844. DOI:10.1021/acs.est.9b00103.
Liu ZG. 2004. Carbon stock and GHG emission of wetland ecosysem. Scientia Geographica Sinica, 24: 634−639. (in Chinese) DOI:10.13249/j.cnki.sgs.2004.05.020.
Luo GY, Wang ZY. 2024. Research on the carbon storage effect and driving factors of the evolution of territorial space pattern in Dongting Lake ecological and economic zone. Ecology and Environmental Sciences, 33: 1672−1685. (in Chinese) DOI:10.16258/j.cnki.1674-5906.2024.11.002.
Mo LD, Zohner CM, Reich PB, et al. 2023. Integrated global assessment of the natural forest carbon potential. Nature, 624: 92−101. DOI:10.1038/s41586-023-06723-z.
Ni J. 2013. Carbon storage in Chinese terrestrial ecosystems: Approaching a more accurate estimate. Climatic Change, 119: 905−917. DOI:10.1007/s10584-013-0767-7.
Patil V, Singh A, Naik N, et al. 2015. Estimation of mangrove carbon stocks by applying Remote Sensing and GIS techniques. Wetlands, 35: 695−707. DOI:10.1007/s13157-015-0660-4.
Post WM, Emanuel WR, Zinke PJ, et al. 1982. Soil carbon pools and world life zones. Nature, 298: 156−159. DOI:10.1038/298156a0.
Ren ZC, Zhu HZ, Shi H, et al. 2016. Climatic and topographical factors affecting the vegetative carbon stock of rangelands in arid and semiarid regions of China. Journal of Resources and Ecology, 7: 418−429. DOI:10.5814/j.issn.1674-764x.2016.06.002.
Stern J, Wang Y, Gu B, et al. 2007. Distribution and turnover of carbon in natural and constructed wetlands in the Florida Everglades. Applied Geochemistry, 22: 1936−1948. DOI:10.1016/j.apgeochem.2007.04.007.
Sun X, Li F. 2017. Spatiotemporal assessment and trade-offs of multiple ecosystem services based on land use changes in Zengcheng, China. Science of the Total Environment, 609: 1569−1581. DOI:10.1016/j.scitotenv.2017.07.221.
Tong XH, Zhang-Guo QC, Wei YF. 2016. Remote sensing estimation of the carbon balance Ability based on the object-oriented method for Guangxi Youjiang District. Journal of Geo-Information Science, 18: 1675–1683. (in Chinese) DOI:10.3724/SP.J.1047.2016.01675.
Tong XW, Brandt M, Yue YM, et al. 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1: 44−50. DOI:10.1038/s41893-017-0004-x.
van Groenigen KJ, Gorissen A, Six J, et al. 2005. Decomposition of 14C-labeled roots in a pasture soil exposed to 10 years of elevated CO2. Soil Biology & Biochemistry, 37: 497−506. DOI:10.1016/j.soilbio.2004.08.013.
Xie LY, Ye DD, Zhang H, et al. 2011. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices. Chinese Journal of Agrometeorology, 32: 481−487. (in Chinese) DOI:10.3969/j.issn.1000-6362.2011.04.001.
Yang JY, Li JS, Guan X. 2023. Spatio-temporal pattern and driving mechanism of ecosystem carbon sequestration services in the Wujiang River Basin. Research of Environmental Sciences, 36: 757−767. (in Chinese) DOI:10.13198/j.issn.1001-6929.2023.01.08.
Zhang HT, Wang JH, Zhang YC, et al. 2023. Soil organic carbon dynamics and influencing factors in the Zoige Alpine Wetland from the 1980s to 2020 based on a random forest model. Land, 12: 1923. DOI:10.3390/land12101923.
Zhang ZM, Zhou YC, Wang SJ, et al. 2019. The soil organic carbon stock and its influencing factors in a mountainous karst basin in P. R. China. Carbonates and Evaporites, 34: 1031−1043. DOI:10.1007/s13146-018-0432-3.
Zhou WQ, Han Y, Wang JL, et al. 2024. Spatiotemporal heterogeneity and driving forces of carbon storage in the Dongting Lake Basin. China Environmental Science, 44: 1851−1862. (in Chinese) DOI:10.19674/j.cnki.issn1000-6923.20231127.038.
Zhu XL, Chen J, Gao F, et al. 2010. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, 114: 2610−2623. DOI:10.1016/j.rse.2010.05.032.
-