Rapid determination of Ferrum, Manganese, Strontium and Barium in geothermal water by ICP-OES
-
Abstract:
Developing a rapid and precise method for trace element analysis in geothermal water is crucial due to its high total dissolved solids and salinity, which can impact element determination. In this study, we optimized the determination of ferrum, manganese, strontium and barium in geothermal water samples collected from different regions. A matrix matching method was established for accurate quantification using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Instrumental conditions and experimental parameters were optimized, and the influence of storage medium and storage duration on measurement accuracy were evaluated. The results demonstrated that storing geothermal water samples in 1% nitric acid had no significant impact on measurement results over an eight-week period. Calibration curve correlation coefficients exceeded 0.9998 for all target elements. The detection limits of this method ranged from 0.0002 mg/L to 0.0031 mg/L, with Relative Standard Deviations (RSD) were 0.07%–2.33%, and spike recovery rates were from 96.8% to 103.2%. The obtained data were consistent with results from the standard addition method and dilution method, demonstrating the reliability of this approach. This method offers low detection limits, high precision and excellent recovery rate, providing a robust reference for the accurate determination of ferrum, manganese, strontium and barium in geothermal water, thereby laying a solid foundation for the development and utilization of geothermal resources.
-
-
Table 1. Operating parameters for ICP-OES determination
Parameter Value Parameter Value Power 1,400 W Auxiliary flow 0.20 L/min Sample flow 1.5 mL/min View dist 15.0 mm Nebulizer flow 0.60 L/min Plasma flow 12 L/min Table 2. Hydrochemical characteristics of the seven geothermal water samples
Sample ID Sample site Hydrochemical type Total Dissolved Solids/mg·L−1 Na+ /mg·L−1 Ca2+/mg·L−1 DR1 Lanzhou, Gansu Na+—Cl− 17,379 5,173 311 DR2 Huizhou, Guangdong Na+—HCO3− 1,336 279 76.4 DR3 Heze, Shandong Na+—SO42− 5,626 773 125 DR4 Langfang, Hebei Na+—Cl− 2,823 794 232 DR5 Zhangjiakou, Hebei Ca2+—HCO3− 443 32.7 140 DR6 Lu'an, Anhui Na+—HCO3− 541 110 62.8 DR7 Dandong, Liaoning Na+—Cl− 4,725 1,387 58.9 Table 3. Analytical results of internal control and samples
ID Analytical results /mg·L−1 Matrix matching method Standard addition method Ferrum Manganese Strontium Barium Ferrum Manganese Strontium Barium IC1 0.4995 0.4902 0.5169 0.4989 0.4983 0.5011 0.5076 0.5032 IC2 1.0101 0.9964 1.0098 1.0213 1.0028 0.9896 0.9976 1.0145 DR1 4.7688 1.2538 3.7658 0.8746 4.6944 1.2612 3.6212 0.8731 DR2 0.1345 0.2576 2.5127 0.2142 0.1296 0.2489 2.5312 0.2099 DR3 1.3795 0.3122 2.7611 0.3816 1.3628 0.3075 2.8234 0.3782 DR4 0.5134 0.2110 0.8712 0.4419 0.5096 0.2087 0.8548 0.4503 DR5 0.0985 0.1038 0.9984 0.0072 0.0964 0.9958 1.0274 0.0066 DR6 N.D. 0.0098 0.2964 0.0976 N.D. 0.0094 0.2951 0.1001 DR7 2.4982 1.2131 1.5873 0.5964 2.5214 1.1876 1.6249 0.6077 Table 4. Comparison of analytical results of ICP-OES and ICP-MS
ID Analytical results/mg·L−1 ICP-OES ICP-MS Ferrum Manganese Strontium Barium Ferrum Manganese Strontium Barium DR1 4.7688 1.2538 3.7658 0.8746 4.9126 1.2544 3.8679 0.8633 DR2 0.1345 0.2576 2.5127 0.2142 0.1421 0.2713 2.5691 0.2228 DR3 1.3795 0.3122 2.7611 0.3816 1.4091 0.3085 2.7834 0.3992 DR4 0.5134 0.2110 0.8712 0.4419 0.5040 0.2276 0.8964 0.4622 DR5 0.0985 0.1038 0.9984 0.0072 0.0998 0.1064 1.0019 0.0078 DR6 N.D 0.0098 0.2964 0.0976 0.0011 0.0096 0.2993 0.1002 DR7 2.4982 1.2131 1.5873 0.5964 2.5096 1.2213 1.5966 0.6003 Table 5. Detection limit and measured range of the mothod
Element Linearity Detection limit/mg·L−1 Linear range/mg·L−1 Ferrum 0.9998 0.0013 0.005–10.0 Manganese 0.9999 0.0002 0.001–10.0 Strontium 0.9998 0.0003 0.001–10.0 Barium 0.9999 0.0002 0.001–10.0 -
Ashok D, Harini BP. 2023. Spatial evaluation of the heavy metal iron in soil, pond water and its mobility into the muscles of zebrafish using ICP-OES. Agricultural Science Digest, 44(2): 382−387. DOI:10.18805/ag.D-5869.
Banks D. 2022. The value of heat and geothermal waters. Quarterly Journal of Engineering Geology and Hydrogeology, 56(1): 1470−9236. DOI:10.1144/qjegh2022-064.
Chen GJ. 2014. Determination of the content of eight trace elements in geothermal water by ICP-AES method. Chemistry and Adhesion, 36(2): 153−154. (in Chinese)
Chen K. 2016. Indirect determination of Sulfate in surface water and groundwater by inductively coupled plasma atomic emission spectrometry. Metallurgical Analysis, 36(9): 73−76. (in Chinese) DOI:10.13228/j.boyuan.issnl000-7571.009892.
Deng XQ. 2013. Compare between inductively coupled plasma emission method and flame atomic absorption method of determination of Iron and Manganese in water sample. Environment Monitoring and Forewarning, 5(1): 26−29. (in Chinese) DOI:10.3969/j.issn.1674-6732.2013.01.00.
Farhadiyan S, Kiani A, Noghre N, et al. 2024. Assessment of trace elements in Iranian kefir samples by using ICP-OES technique. International Journal of Environmental Analytical Chemistry, 0306–7319. DOI:10.1080/03067319.2024.2359053.
Feng ZX, Xu HB, Wu JC, et al. 2017. Study on hydrochemical characteristics of geothermal water in Jiangsu province. Ground Water, 39(4): 5−8. (in Chinese)
Guo RL, Guo S, Zhang LJ. 2015. Characteristics and forming analysis of the qijia hot spring in Longhua county of Hebei Province. Journal of East China Institute of Technology (Natural Science), 38(2): 218−226. (in Chinese) DOI:10.3969/j.issn.1674-3504.2015.02.013.
Han M, Zhang W, Jia N, et al. 2024. Determination of trace Lead and Copper in seawater by inductively coupled plasma-mass spectrometry with coconut shell biochar enrichment. Rock and Mineral Analysis, 43(2): 281−288. (in Chinese) DOI:10.15898/j.ykcs.202308170138.
Han T, Yu XP, Guo YF, et al. 2020. Determination of Lithium in high salinity samples by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Spectroscopy and Spectral Analysis, 40(4): 1214−1220. (in Chinese) DOI:10.3964/j.issn.1000-0593(2020)04-1214-07.
Hao YZ, Pan M, Lv Y, et al. 2014. Hydrochemical features of the hot spring in Kejie fault, Changning, Yunnan. Geological Science and Technology Information, 33(4): 191−196. (in Chinese)
Ibrahim AA, Ahmed NA, Sadeq MA, et al. 2024. Determination of trace and heavy metals in bottled drinking water in Yemen by ICP-MS. Results in Chemistry, 8: 101558. DOI:10.1016/j.rechem.2024.101558.
Jia WH, Liu K, Yan JK, et al. 2024. Characteristics of geothermal waters in eastern Wugongshan based on hydrogen, oxygen, and strontium isotopes. Applied Geochemistry, 161: 105874. DOI:10.1016/j.apgeochem.2023.105874.
Kadhim MA, Naji AS, Khaleefah LS, et al. 2020. Evaluation of some minerals content of drinking and river water in Iraq by AAS method. Indian Journal of Forensic Medicine and Toxicology, 14(3): 1304−1309. DOI:10.37506/IJFMT.V14I3.10577.
Kassim NSA, Ghazali SAISM, Bohari FL, et al. 2022. Assessment of heavy metals in wastewater plant effluent and lake water by using atomic absorption spectrophotometry. Materials Today: Proceedings, 66(10): 3961−3964. DOI:10.1016/j.matpr.2022.04.671.
Liang LH, Ren SG, Luo XG, et al. 2022. Determination of twelve impurity elements in niobium by inductively coupled plasma atomic emission spectrometry. Metallurgical Analysis, 42(9): 75−81. (in Chinese) DOI:10.13228/j.boyuan.issn1000-7571.011747.
Li ML, Duo J, Wang Z, et al. 2015. Hydrochemical characteristics and material sources of the Riduo thermal spring in Tibet. Carsologica Sinica, 34(3): 209−216. (in Chinese) DOI:10.11932/karst20150302.
Liu BB, Han M, Liu J, et al. 2022. Determination of total Sulfur in geothermal water by inductively coupled plasma-atomic emission spectrometry. Journal of Groundwater Science and Engineering, 10(3): 285−291. DOI:10.19637/j.cnki.2305-7068.2022.03.006.
Liu ML, Guo QH, Shi HJ, et al. 2023. Chlorine geochemistry of various geothermal waters in China: implications for geothermal system geneses. Journal of Hydrology, 616(2023): 128783. DOI:10.1016/j.jhydrol.2022.128783.
Ngumba E, Kosunen P, Gachanja A. 2016. A multiresidue analytical method for trace level determination of antibiotics and antiretroviral drugs in wastewater and surface water using SPE-LC-MS/MS and matrix-matched standards. Analytical Methods, 8(37): 6720−6729. DOI:10.1039/c6ay01695b.
Qiao YY, Zhang XW, Fu YG. 2022. Determination of trace elements in drinking water samples by atomic spectroscopy. Modern Food, 28(1): 142−144. (in Chinese) DOI:10.16736/j.cnki.cn41-1434/ts.2022.01.040.
Shang JB, Liu ML, Cao YY, et al. 2024. Trace element geochemistry of high-temperature geothermal waters in the Yunnan-Tibet geothermal province, Southwest China. Applied Geochemistry, 162: 105910. DOI:10.1016/j.apgeochem.2024.105910.
Shen J, Wang B, Xu QR, et al. 2022. Determination of Tantalum, Uranium and Ytterbium in coal by microwave digestion and high resolution inductively coupled plasma optical emission spectrometry based on matrix matching. Metallurgical Analysis, 42(6): 30−36. (in Chinese) DOI:10.13228/j.boyuan.issn1000-7571.011677.
Shi ZD, Mao XM, Ye JQ, et al. 2024. Source analysis of Sodium of low-salinity high-sodium geothermal water in Huangshadong geothermal field from east Guangdong. Earth Science, 49(1): 271−287. (in Chinese) DOI:10.3799/dqkx.2022.170.
Srikritsadawong P, Sookpotarom P, Thongchan S, et al. 2024. A double-layered paper-based analytical device for determination of Iron in water samples based on standard addition method. Current Applied Science and Technology, 24(2): 2586−9396. DOI:10.55003/cast.2023.258955.
Ta MM, Zhou X, Guo J, et al. 2018. Occurrence and formation of the hot springs and thermal groundwater in Chongqing. Hydrogeology & Engineering Geology, 45(1): 165−172. (in Chinese) DOI:10.16030/j.cnki.issn.1000-3665.2018.01.24.
Wang XY, Yuan XY, Shui QN, et al. 2024. Optimized allocation of water temperature, quality, and quantity for the utilization of geothermal water from deep buried reservoirs. Geothermics, 119: 102951. DOI:10.1016/j.geothermics.2024.102951.
Yu JF, Chen SY, Guo WJ, et al. 2018. Determination of Calcium, Magnesium, Iron and Copper in industrial boiler water by inductively coupled plasma atomic emission spectrometry with microwave digestion. Chinese Journal of Inorganic Analytical Chemistry, 8(6): 36−41. (in Chinese) DOI:10.3969/j.issn.2095-1035.2018.06.009.
Zhang KG, Guo R, Wang YH, et al. 2024. One-step derivatization and temperature-controlled vortex-assisted liquid-liquid microextraction based on the solidification of floating deep eutectic solvents coupled to UV–Vis spectrophotometry for the rapid determination of total iron in water and food samples. Food Chemistry, 384: 132414. DOI:10.1016/j.foodchem.2022.132414.
Zhang R. 2017. Research of convective type geothermal water characteristic in Shanxi province. Ground Water, 39(1): 21−23. (in Chinese) DOI:10.3969/j.issn.1004-1184.2017.01.006.
Zhang YQ, Xiao Y, Yang HJ, et al. 2024. Hydrogeochemical and isotopic insights into the genesis and mixing behaviors of geothermal water in a faults-controlled geothermal field on Tibetan Plateau. Journal of Cleaner Production, 442(0): 140980. DOI:10.1016/j.jclepro.2024.140980.
Zhao X, Yan H, Yu LL, et al. 2020. Determination of high content of Titanium inilmenite by inductively coupled plasma-optical emission spectrometry with Sodium peroxide alkali fusion. Rock and Mineral Analysis, 39(3): 459−466. (in Chinese) DOI:10.15898/j.cnki.11-2131/td.201911020150.
Zhou XL, Wang QN, Mi HP, et al. 2020. Determination of Indium in flue ash via ICP-AES method. Spectroscopy and Spectral Analysis, 40(4): 1201−1206. (in Chinese) DOI:10.3964/j.issn.1000-0593(2020)04-1201-06.
Zou J, Yang Q, Luo W, et al. 2017. Determination of Sulfur and Boron in salt lake brine and salt products using inductively coupled plasma atomic emission spectrometry. Fine Chemical Intermediates, 47(1): 63−65. (in Chinese) DOI:10.19342/j.cnki.issn.1009-9212.2017.01.017.
-