中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版

Shi Jing-tao, Gao Ge, Liu Jun-jian, Jiang Yu-ge, Li Bo, Hao Xiao-yan, Zhang Jun-chao, Li Zhao-yi, Sun Huan. 2025. Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling. Journal of Groundwater Science and Engineering, 13(3): 209-224. doi: 10.26599/JGSE.2025.9280050
Citation: Shi Jing-tao, Gao Ge, Liu Jun-jian, Jiang Yu-ge, Li Bo, Hao Xiao-yan, Zhang Jun-chao, Li Zhao-yi, Sun Huan. 2025. Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling. Journal of Groundwater Science and Engineering, 13(3): 209-224. doi: 10.26599/JGSE.2025.9280050

Ecological vulnerability assessment and driving force analysis of small watersheds in Hilly Regions using sensitivity-resilience-pressure modeling

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Table 1.  Evaluation index system of SRP model for ecological vulnerability in Pingquan area

    Target level Factor layer Indicator layer Relationship type
    Ecological vulnerability Ecological sensitivity Geo-construction (X1) Proactively
    Elevation (X2) Proactively
    Altitude (X3) Proactively
    Annual rainfall (X4) Pessimistic
    Average annual temperature (X5) Pessimistic
    Dryness index (X6) Pessimistic
    Vegetation cover (X7) Pessimistic
    Soil erosion factor (X8) Proactively
    Landscape fragmentation (X9) Proactively
    Ecological resilience Vegetation NPP (X10) Pessimistic
    Soil type (X11) Proactively
    Soil nutrient synthesis (X12) Pessimistic
    Ecological richness (X13) Pessimistic
    Ecological pressure Population density (X14) Proactively
    GDP (X15) Proactively
    Food crop production (X16) Proactively

    Gross output value of agriculture, forestry, livestock and fisheries (X17)

    Proactively
    下载: 导出CSV

    Table 2.  Soil N, P, K composite nutrient index division

    Indicator Ki 100 90 70 50 30
    N (g/kg) >2 >1.5–2 >1–1.5 >0.75–1 ≤0.75
    P >1 >0.8–1 >0.6–0.8 >0.4–0.6 ≤0.4
    K >25 >20–25 >15–20 >10–15 ≤10
    下载: 导出CSV

    Table 3.  Grading criteria for ecological vulnerability assessment in Pingquan City

    Factor Indicator Very low vulnerability Low vulnerability Moderate vulnerability High vulnerability Very high vulnerability Grading standard

    Ecological sensitivity

    X1

    Quaternary terrestrial loose accumulation formation

    Jurassic-Cretaceous medium-acidic ejecta formation; Precambrian medium-acidic rock formation

    Precambrian basement rock formation; Precambrian regional metamorphic rock formation; Precambrian contact metamorphic rock formation

    Triassic-Cretaceous terrestrial clastic formation; Jurassic-Cretaceous volcanic clastic formation; Sinian-Permian sandy clastic formation; Sinian-Carboniferous argillaceous clastic formation

    Sinian-Permian marine carbonate rock formation

    Field survey validation

    X2 (°) <2 [2,6) [6,15) [15,25) ≥25

    TD/T1055-2019

    X3 (m) <595 [595,741) [741,909) [909,1152) ≥1152

    Natural breakpoint method

    X4 (mm) >582 (528,582] (478,528] (432,478] ≤432

    Natural breakpoint method

    X5 (°C) >9.2 (8.6,9.2] (7.8,8.6] (6.5,7.8] ≤6.5

    Natural breakpoint method

    X6 >30.7 (28.2,30.7] (26.1,28.2] (23.3,26.1] ≤23.3

    Natural breakpoint method

    X7 >0.91 (0.72,0.91] (0.49,0.72] (0.18,0.49] ≤0.18

    Natural breakpoint method

    X8 <0.03052 [0.03052,0.03068) [0.03068,0.03085) [0.03085,0.03110) ≥0.03110

    Natural breakpoint method

    X9 <23.28 [23.28,48.46) [48.46,82.89) [82.89,164.67) ≥164.67

    Natural breakpoint method

    Ecological resilience

    X10 >557.6 (486.8,557.6] (430.4,486.8] (214.2,430.4] ≤214.2

    Natural breakpoint method

    X11 Brown soil Cinnamon soil Damp soil

    Coarse aggregate soil

    Field survey validation

    X12 (96.6,100] (91.8,96.6] (87.3,91.8] [80,87.3] <80

    Natural breakpoint method

    X13 >86.55 (76.66,86.55] (68.63,76.66] (53.13,68.63] ≤53.13

    Natural breakpoint method

    Ecological pressure

    X14 (persons/km2) <83 [83,124) [124,141) [141,169) ≥169

    Natural breakpoint method

    X15 (million/km2) <336 [336,374) [374,444) [444,727) ≥727

    Natural breakpoint method

    X16/t <1283 [1283,8022) [8022,12963) [12963,19230) ≥19230

    Natural breakpoint method

    X17/million <9326 [9326,19168) [19168,28566) [28566,38376) ≥38376

    Natural breakpoint method

    下载: 导出CSV

    Table 4.  The load of each index factor in the study area

    Typology F1 F2 F3 Typology F1 F2 F3 Typology F1 F2 F3
    Sensitivity −0.070 −0.027 0.997 Resilience 0.926 0.369 0.075 Pressure −0.370 0.929 −0.001
    X1 0.846 −0.453 −0.014 X10 0.045 −0.011 −0.043 X14 −0.024 0.983 −0.167
    X2 0.111 −0.093 −0.213 X11 0.988 −0.147 0.009 X15 0.015 0.089 0.071
    X3 −0.081 −0.174 −0.459 X12 −0.007 −0.002 0.999 X16 0.653 0.136 0.741
    X4 0.406 0.637 0.028 X13 0.147 0.989 0.002 X17 0.757 −0.088 −0.646
    X5 0.121 0.155 0.455
    X6 0.278 0.455 −0.214
    X7 0.065 −0.050 −0.136
    X8 0.039 −0.296 0.570
    X9 0.057 −0.169 −0.383
    Eigenvalue 0.073 0.046 0.035 Eigenvalue 0.118 0.036 0.012 Eigenvalue 0.064 0.031 0.006
    Variance/% 36.13 22.663 17.52 Variance/% 69.45 21.169 7.027 Variance/% 61.343 30.180 5.790
    下载: 导出CSV

    Table 5.  Judgement matrix for evaluation of ecological sensitivity indicators in Pingquan City

    TypologyX1X2X3X4X5X6X7X8X9
    X11
    X21/81
    X31/811
    X41/81/41/41
    X51/81/21/21/21
    X61/91/21/3111
    X71/211/21/21/41/31
    X811/61/61/61/61/61/61
    X91/21/21/61/81/81/61/41/81
    下载: 导出CSV

    Table 6.  Judgement matrix for evaluation of ecological resilience indicators in Pingquan City

    TypologyX10X11X12X13
    X101
    X111/41
    X121/21/21
    X1311/41/21
    下载: 导出CSV

    Table 7.  Judgement matrix for evaluation of ecological pressure indicators in Pingquan City

    TypologyX14X15X16X17
    X141
    X1511
    X161/41/21
    X171/41/21/61
    下载: 导出CSV

    Table 8.  Weights of ecological vulnerability evaluation indicators in Pingquan City (wj is the comprehensive weight; w1j is the weight calculated by PCA; w2j is the weight obtained by AHP)

    Typology W1j W2j Wj Typology W1j W2j Wj
    Ecological sensitivity 0.197 0.655 0.416 Ecological resilience 0.690 0.211 0.442
    Geo-construction (X1) 0.1 0.349 0.216 Vegetation NPP (X10) 0.098 0.387 0.21
    Elevation (X2) 0.051 0.101 0.083 Soil type (X11) 0.425 0.282 0.373
    Altitude (X3) 0.001 0.125 0.013 Soil nutrient synthesis (X12) 0.15 0.175 0.174
    Annual rainfall (X4) 0.215 0.086 0.157 Ecological richness (X13) 0.327 0.156 0.243

    Average annual temperature (X5)

    0.152 0.095 0.139 Ecological pressure 0.113 0.134 0.142
    Dryness index (X6) 0.157 0.085 0.134 Population density (X14) 0.252 0.4 0.335
    Vegetation cover (X7) 0.08 0.07 0.087 GDP (X15) 0.13 0.291 0.205
    Soil erosion factor (X8) 0.163 0.061 0.115 Food crop production (X16) 0.405 0.217 0.313
    Landscape fragmentation (X9) 0.081 0.028 0.055

    Gross output value of agriculture, forestry, livestock and fisheries (X17)

    0.213 0.092 0.148
    下载: 导出CSV

    Table 9.  Area ratio of different vulnerability classes of EVI in Pingquan City

    Typology
    Area (km2) 500.91 783.60 680.92 755.50 433.36
    Area ratio (%) 16 25 21 24 14
    下载: 导出CSV

    Table 10.  Ratio of EVI to area of each element in different watersheds in Pingquan region

    Basin Ecological Vulnerability (%) Ecological sensitivity (%)
    B120.2934.3423.1011.5510.7223.8022.4238.4115.260.11
    B25.8022.6017.6839.3814.530.0124.4043.9426.585.08
    B30.0010.7129.8129.8529.630.000.2118.3434.1647.29
    B411.8031.8526.9617.0412.3616.4132.4621.6828.930.53
    B556.603.878.2131.270.066.8014.7153.0125.490.00
    BasinEcological resilience (%)Ecological pressure (%)
    B17.8836.4121.4313.1621.129.6427.3021.9139.401.75
    B23.0518.7916.6521.2640.2635.1841.4222.700.620.09
    B30.9757.914.432.4634.220.000.1839.820.0859.92
    B40.0038.6233.130.2228.030.0050.5025.4024.100.00
    B554.155.290.0640.430.070.4599.100.190.260.00
    下载: 导出CSV

    Table 11.  Detection results of factors in Pingquan area

    Indicator q value Indicator q Value Indicator q Value
    Geo-construction (X1) 0.123 Vegetation cover (X7) 0.014 Ecological richness (X13) 0.120
    Elevation (X2) 0.083 Soil erosion factor (X8) 0.188 Population density (X14) 0.027
    Altitude (X3) 0.248 Landscape fragmentation (X9) 0.084 GDP (X15) 0.051
    Annual rainfall (X4) 0.105 Vegetation NPP (X10) 0.025 Food crop production (X16) 0.084

    Average annual temperature (X5)

    0.220 Soil type (X11) 0.543

    Gross output value of agriculture, forestry, livestock and fisheries (X17)

    0.070
    Dryness index (X6) 0.040 Soil nutrient synthesis (X12) 0.035
    下载: 导出CSV
  • Cui C. 2012. The study of ecological environment evolution and countermeasures in source area of the Three Rivers. In Proceedings of the 5th International Yellow River Forum on Ensuring Water Right of the River's Demand and Healthy River Basin maintenance, Minist Water Resources, Yellow River Conservancy Commiss, Zhengzhou, China, 24–28 September.

    De Lange HJ, Sala S, Vighi M, et al. 2010. Ecological vulnerability in risk assessment—A review and perspectives. Science of the Total Environment, 408(18): 3871−3879. DOI:10.1016/j.scitotenv.2009.11.009.

    Fan ZW, Liu MS, Shen WQ, et al. 2009. GIS-based assessment on eco-vulnerability of Jiangxi Province. In 2009 International Conference on Environmental Science and Information Application Technology (Vol. 3, pp. 426–431). IEEE. DOI:10.1109/ESIAT.2009.321.

    Gao Y, Zhang H. 2018. The study of ecological environment fragility based on remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 46, 793–799. DOI:10.1007/s12524-018-0759-1.

    Hou K, Li X, Wang J, et al. 2016. Evaluating ecological vulnerability using the GIS and Analytic Hierarchy Process (AHP) Method in Yan'an, China. Polish Journal of Environmental Studies, 25(2). DOI:10.15244/pjoes/61312.

    Hou K, Li X, Zhang J. 2015. GIS analysis of changes in ecological vulnerability using a SPCA model in the Loess plateau of Northern Shaanxi, China. International Journal of Environmental Research and Public Health, 12(4): 4292−4305. DOI:10.3390/ijerph120404292.

    Hu X, Ma C, Huang P, et al. 2021. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection–A case of Weifang City, China. Ecological Indicators, 125: 107464. DOI:10.1016/j.ecolind.2021.107464.

    Ippolito A, Sala S, Faber JH, et al. 2010. Ecological vulnerability analysis: A river basin case study. The Science of the Total Environment 408 (18): 3880–3890. DOI:10.1016/j.scitotenv.2009.10.002.

    Jiang W, Deng L, Chen L, et al. 2009. Risk assessment and validation of flood disaster based on fuzzy mathematics. Progress in Natural Science, 19(10): 1419−1425. DOI:10.1016/j.pnsc.2008.12.010.

    Lan G, Jiang X, Xu D, et al. 2023. Ecological vulnerability assessment based on remote sensing ecological index (RSEI): A case of Zhongxian County, Chongqing. Frontiers in Environmental Science, 10: 1074376. DOI:10.3389/fenvs.2022.1074376.

    Leitao AB, Ahern J, 2002. Applying landscape ecological concepts and metrics in sustainable landscape planning. Landscape and Urban Planning, 59(2): 65–93. DOI:10.1016/S0169-2046(02)00005-1.

    Li A, Wang A, Liang S, et al. 2006. Eco-environmental vulnerability evaluation in mountainous region using remote sensing and GIS—A case study in the upper reaches of Minjiang River, China. Ecological Modelling, 192(1-2): 175−187. DOI:10.1016/j.ecolmodel.2005.07.005.

    Li AN, Wang AS, He XR, et al. 2006. Integrated evaluation model for eco-environmental quality in mountainous region Based on Remote Sensing and GIS. Wuhan University Journal of Natural Sciences, 11(4): 969−976. DOI:10.1007/BF02830196.

    Li L, Shi ZH, Yin W, et al. 2009. A fuzzy analytic hierarchy process (FAHP) approach to eco-environmental vulnerability assessment for the danjiangkou reservoir area, China. Ecological Modelling, 220(23): 3439−3447. DOI:10.1016/j.ecolmodel.2009.09.005.

    Li Y, Huang S, 2015. Landscape ecological risk responses to land use change in the Luanhe River Basin, China. Sustainability, 7(12): 16631–16652. DOI:10.3390/su71215835.

    Liu JY, Nie HF, Xu L, et al. 2025. Assessment of ecological geological vulnerability in Mu Us Sandy Land based on GIS and suggestions of ecological protection and restoration. China Geology, 8(1): 117−140. DOI:10.31035/ cg20230027.

    Luo M, Jia X, Zhao Y, et al. 2024. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecological Indicators, 159: 111658. DOI:10.1016/j.ecolind.2024.111658.

    Qiu PH, Xu XJ, Xie GZ, et al. 2007. Analysis of the ecological vulnerability of the western Hainan Island based on its landscape pattern and ecosystem sensitivity. Acta Ecologica Sinica, 27(4): 1257−1264. DOI:10.1016/S1872-2032(07)60026-2.

    Sahoo S, Dhar A, Kar A. 2016. Environmental vulnerability assessment using Grey Analytic Hierarchy Process based model. Environmental Impact Assessment Review, 56: 145−154. DOI:10.1016/j.eiar.2015.10.002.

    Shan C, Dong Z, Lu D, et al. 2021. Study on river health assessment based on a fuzzy matter-element extension model. Ecological Indicators, 127: 107742. DOI:10.1016/j.ecolind.2021.107742.

    Shi JT, Liu JJ, Zhang JC, et al. 2024. Analysis of soil heavy metal influencing factors and sources in typical small watersheds in shallow mountainous area. Geophysical and Geochemical Exploration, 48(3): 834−846. (in Chinese) DOI:10.11720/wtyht.2024.1270.

    Wang XD, Zhang XH, Gao P. 2010. A GIS-based decision support system for regional eco-security assessment and its application on the Tibetan Plateau. Journal of Environmental Management, 91(10): 1981−1990. DOI:10.1016/j.jenvman.2010.05.006.

    Wang Z, Su Y. 2002. Analysis of Eco-environment vulnerability characteristics of Hanzhong City, near the water source midway along the route of the south-to-north water transfer project, China. Acta Ecologica Sinica, 38(02): 432–442. DOI:10.5846/stxb201609261944.

    Wu C, Liu G, Huang C, et al. 2018. Ecological vulnerability assessment based on fuzzy analytical method and analytic hierarchy process in Yellow River Delta. International Journal of Environmental Research and Public Health, 15(5): 855. DOI:10.3390/ijerph15050855.

    Xu W, Dong Z, Li D, et al. 2017. River health evaluation based on the Fuzzy matter-element extension assessment model. Polish Journal of Environmental Studies, 26(3). DOI:10.15244/pjoes/67369.

    Xu X, Yang H, Yang D, et al. 2013. Assessing the impacts of climate variability and human activities on annual runoff in the Luan River basin, China. Hydrology Research, 44(5): 940−952. DOI:10.2166/nh.2013.144.

    Xue LQ, Wang J, Zhang L, et al. 2019. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Science of the Total Environment, 649: 876−888. DOI:10.1016/j.scitotenv.2018.08.321.

    Yang L, Cheng YP, Wen XR, et al. 2024. Development, hotspots and trend directions of groundwater numerical simulation: A bibliometric and visualization analysis. Journal of Groundwater Science and Engineering, 12(4): 411−427. DOI:10.26599/JGSE.2024.9280031.

    Zhang F, Liu X, Zhang J, et al. 2017. Ecological vulnerability assessment based on multi-sources data and SD model in Yinma River Basin, China. Ecological Modelling, 349: 41−50. DOI:10.1016/j.ecolmodel.2017.01.016.

    Zhang H, Lin X, Yu G, et al. 2009. Ecological vulnerability assessment in the middle and lower reaches of the Hanjiang river basin. In 2009 3rd International Conference on Bioinformatics and Biomedical Engineering: 1-4. DOI:10.1109/ICBBE.2009.5162677.

    Zhang XL, Yu WB, Cai HS, et al. 2018. Review of the evaluation methods of regional eco-environmental vulnerability. Acta Ecologica Sinica, 38: 5970−5981. DOI:10.5846/stxb201708211502.

    Zhang XQ, Wang LK, Fu XS, et al. 2017. Ecological vulnerability assessment based on PSSR in Yellow River Delta. Journal of Cleaner Production, 167: 1106−1111. DOI:10.1016/j.jclepro.2017.04.106.

    Zhang XY, Liu K, Wang S, et al. 2022. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecological Indicators, 135: 108586. DOI:10.1016/j.ecolind.2022.108586.

    Zhao Y, Liu L, Kang S, et al. 2021. Quantitative analysis of factors influencing spatial distribution of soil erosion based on geo-detector model under diverse geomorphological types. Land, 10(6): 604. DOI:10.3390/land10060604.

    Zou T, Yoshino K, 2017. Environmental vulnerability evaluation using a spatial principal components approach in the Daxing'anling region, China. Ecological Indicators, 78, 405–415. DOI:10.1016/j.ecolind.2017.03.039.

    Zou T, Chang Y, Chen P, et al. 2021. Spatial-temporal variations of ecological vulnerability in Jilin Province (China), 2000 to 2018. Ecological Indicators, 133: 108429. DOI:10.1016/j.ecolind.2021.108429.

  • 加载中

(5)

(11)

计量
  • 文章访问数:  25
  • PDF下载数:  4
  • 施引文献:  0
出版历程
收稿日期:  2024-10-16
录用日期:  2025-04-12
网络出版日期:  2025-06-27
刊出日期:  2025-09-15

目录