中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Ran Bin, Zhang Wan-yu, Zhang Zai-yong, Wu Ze-yu. 2025. Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China. Journal of Groundwater Science and Engineering, 13(3): 225-236. doi: 10.26599/JGSE.2025.9280051
Citation: Ran Bin, Zhang Wan-yu, Zhang Zai-yong, Wu Ze-yu. 2025. Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China. Journal of Groundwater Science and Engineering, 13(3): 225-236. doi: 10.26599/JGSE.2025.9280051

Mechanisms of irrigation water recharge in the Kongque River Irrigation District of Xinjiang, China

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Table 1.  Soil properties

    Land use type Depth/cm Soil bulk density/g/cm3 Clay/% Silt/% Sand/% Soil type
    Cotton field 10.00 1.28 9.49 39.43 51.08 Loam
    20.00 1.45 10.32 47.21 42.47 Loam
    30.00 1.50 12.25 75.02 12.73 Silt loam
    Bare land 10.00 1.20 2.69 6.06 91.25 Sand
    30.00 1.18 11.79 34.06 54.15 Sandy Loam
    50.00 1.29 12.99 40.62 46.39 Loam
    70.00 1.27 2.70 55.63 41.67 Silt loam
    Pear orchard 10.00 1.32 14.92 39.36 45.72 Loam
    20.00 1.07 15.43 35.59 48.98 Loam
    30.00 1.28 1.40 14.17 84.43 Sandy Loam
    40.00 1.42 4.56 50.70 44.74 Silt loam
    下载: 导出CSV

    Table 2.  Detailed information of soil profile (Note that 'X' means pear orchard sites, 'M' means cotton field sites, and 'L' means bare land site)

    Soil profiles Sampling depth/cm Land use type Water sources
    L1 100 Bare land Rainfall
    M1 220 Cotton field Rainfall and confined water
    M2 220 Cotton field Rainfall and confined water
    M3 220 Cotton field Rainfall and confined water
    M4 220 Cotton field Rainfall and confined water
    M5 220 Cotton field Rainfall and confined water
    M6 220 Cotton field Rainfall and confined water
    M7 200 Cotton field Rainfall and confined water
    M8 400 Cotton field Rainfall and river
    M9 220 Cotton field Rainfall and river
    X1 220 Pear orchard Rainfall
    X2 220 Pear orchard Rainfall
    X3 280 Pear orchard Rainfall and confined water
    X4 140 Pear orchard Rainfall and confined water
    X5 220 Pear orchard Rainfall and confined water
    X6 200 Pear orchard Rainfall and confined water
    X7 220 Pear orchard Rainfall and confined water
    X8 500 Pear orchard Rainfall and river
    X9 400 Pear orchard Rainfall and river
    X10 280 Pear orchard Rainfall and river
    X11 280 Pear orchard Rainfall and river
    X12 280 Pear orchard Rainfall and river
    X13 100 Pear orchard Rainfall and river
    X14 220 Pear orchard Rainfall and river
    X15 180 Pear orchard Rainfall and river
    X16 220 Pear orchard Rainfall and river
    X17 220 Pear orchard Rainfall and river
    X18 220 Pear orchard Rainfall and river
    X19 220 Pear orchard Rainfall and river
    下载: 导出CSV

    Table 3.  The maximum stained depth and preferential flow indices (stained area ratio, matrix flow depth, preferential flow ratio, and length index)

    Site name Vertical profile Maximum stained depth/cm Stained area ratio/% Matrix flow depth/cm Preferential flow ratio/% Length index/%
    Bare land L10 50.00 10.58 5.00 52.74 112.52
    L30 62.00 27.73 16.00 42.30 170.28
    L50 67.20 29.70 13.00 56.23 174.70
    Average 59.73 22.67 11.33 50.42 152.50
    Standard deviation 6.50 8.06 4.22 5.00 26.70
    Cotton field M10 36.00 12.63 10.00 20.82 116.49
    M30 27.00 8.41 5.00 40.55 100.18
    M50 28.00 9.07 4.00 55.90 90.12
    Average 30.33 10.03 6.33 30.09 102.26
    Standard deviation 3.80 1.73 2.40 12.20 9.49
    Pear orchard X10 44.00 19.25 15.00 22.08 130.37
    X30 45.00 20.05 15.00 25.19 129.25
    X50 39.00 17.00 13.00 23.51 131.42
    Average 42.67 18.77 14.33 23.59 130.35
    Standard deviation 2.44 1.29 0.89 1.27 0.73
    下载: 导出CSV

    Table 4.  Pearson correlation between soil properties and length index

    The length index of different land use types Soil properties
    Soil bulk density /g/cm3 Sand /% Clay /% Silt /%
    Bare land −0.752** 0.957** −0.512** −0.900**
    Cotton field −0.998** 0.998** −0.994** −0.989**
    Pear orchard −0.985** 0.066 0.462 −0.298
    Note: ** indicates significant correlation at p<0.01 level
    下载: 导出CSV
  • Chen C, Xin Z, Ashutosh Kumar S, et al. 2022. Effects of grazing exclusion on soil infiltrability and preferential flow in savannah livestock grazing systems. Land Degradation & Development, 33(16). DOI:10.1002/ldr.4368

    Chu L, Huang R, Zhao Y, et al. 2023. Characteristics of preferential flow dyeing morphology in the field-ridge transition zone of different land use types in low mountainous and hilly areas. Transactions of the Chinese Society of Agricultural Engineering, 39(04): 115−123. (in Chinese). DOI:10.11975/j.issn.1002-6819.202209171.

    Cook P, Brunner P. 2025. Quantification of Groundwater Recharge. The Groundwater Project, Canada. DOI:10.62592/BAUS7081

    Cook PG, Jolly ID, Leaney FW, et al. 1994. Unsaturated zone tritium and chlorine 36 profiles from southern Australia: Their use as tracers of soil water movement. Water Resources Research, 30(6): 1709−1719. DOI:10.1029/94WR00161.

    Du J. 2009. Coupled modeling and controlling of water and salt transportin the unsaturated-saturated zone in an arid salinization region-A case study in Yanqi Basin of Xinjiang, China. China University of Geosciences (in Chinese).

    Gong C, Cook PG, Therrien R, et al. 2023. On groundwater recharge in variably saturated subsurface flow models. Water Resources Research, 59(9): e2023WR034920. DOI:10.1029/2023WR034920.

    Gong C, Zhang Z, Wang W, et al. 2021. An assessment of different methods to determine specific yield for estimating groundwater recharge using lysimeters. Science of The Total Environment, 788: 147799. DOI:10.1016/j.scitotenv.2021.147799.

    Guan N, Cheng JH, Hou F, et al. 2023. Characteristics and influencing factors of soil preferential flow in typical stands of Karst area in southwest China. Chinese Journal of Applied Ecology, 34(1): 31−38. (in Chinese). DOI:10.13287/j.1001-9332.202301.020.

    Hou F, Cheng J, Guan N. 2023. Investigating the effect of soil cracks on preferential flow using a dye tracing infiltration experiment in karst in Southwest China. Land Degradation and Development, 34(6): 1612−1628. DOI:10.1002/ldr.4557.

    Lv G, Jin Z, Ling S, et al. 2019. Characteristics of soil preferential flow in water conservation forest at Hunhe River Source. Journal of Soil and Water Conservation, 33(04): 287−292. (In Chinese). DOI:10.13870/j.cnki.stbcxb.2019.04.040.

    Porhemmat J, Nakhaei M, Altafi Dadgar M, et al. 2018. Investigating the effects of irrigation methods on potential groundwater recharge: A case study of semiarid regions in Iran. Journal of Hydrology, 565: 455−466. DOI:10.1016/j.jhydrol.2018.08.036.

    Qiu D, Xu R, Wu C, et al. 2023. Effects of vegetation restoration on soil infiltrability and preferential flow in hilly gully areas of the Loess Plateau, China. Catena, 221: 106770. DOI:10.1016/j.catena.2022.106770.

    Scanlon BR, Healy RW, Cook PG. 2002. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeology Journal, 10(1): 18−39. DOI:10.1007/s10040-001-0176-2.

    Van Schaik NLMB. 2009. Spatial variability of infiltration patterns related to site characteristics in a semi-arid watershed. Catena, 78(1): 36−47. DOI:10.1016/j.catena.2009.02.017.

    Wang W, Gong C, Zhang Z, et al. 2018. Research status and prospect of the subsurface hydrology and ecological effect in arid regions. Advances in Earth Science, 33(07): 702−718. (in Chinese). DOI:10.11867/j.issn.1001-8166.2018.07.0702.

    Yuan R, Long X, Wang P, et al. 2015. Discussion on application of Chloride Mass Balance method. Journal of China Hydrology, 35(04): 7−13; 26 (in Chinese). DOI:10.3969/j.issn.1000-0852.2015.04.002.

    Zhang J, Yin L, Gu X, et al. 2021a. Study on the relationship between groundwater and surface water in Xinjiang Kongque Rver Basin using isotopes and hydrochemistry method. Northwestern Geology, 54(01): 185−195. (in Chinese). DOI:10.19751/j.cnki.61-1149/p.2021.01.016.

    Zhang Z, Wang W, Gong C, et al. 2021b. Effects of non-isothermal flow on groundwater recharge in a semi-arid region. Hydrogeology Journal, 29(2): 541−549. DOI:10.1007/s10040-020-02217-8.

    Zhang P. 2015. Study on the water and salt transportation in theunsaturated zone and the influence on groundwater qualityin irrigated land of Kongque River alluvial-proluvial fan. Jilin University (in Chinese)

    Zhang X, Chen J, Zhan L, et al. 2023. Study on groundwater recharge based on chloride mass balance and hydrochemistry in the irrigated agricultural area, North China Plain. Environmental Earth Sciences, 82(3): 70. DOI:10.1007/s12665-022-10682-5.

    Zhang Z, Wang W, Gong C, et al. 2021c. Salix psammophila afforestations can cause a decline of the water table, prevent groundwater recharge and reduce effective infiltration. Science of the Total Environment, 780: 146336. DOI:10.1016/j.scitotenv.2021.146336.

    Zheng X, Cheng J, Zhang H, et al. 2018. Characteristics and influencing factors of preferential flow dyeing morphology of two soils in Beijing. Journal of Soil and Water Conservation, 32(03): 113−119; 131. (in Chinese). DOI:10.13870/j.cnki.stbcxb.2018.03.018.

    Zhong S, Li C, Qiao P. 2025. Vegetation abrupt changes and attribution in the arid and semi-arid regions of Northwest China under aridity gradients from 2000 to 2020. Journal of Desert Research, 45(02): 275−283. (in Chinese). DOI:10.7522/j.issn.1000-694X.2025.00015.

    Zhou H, Li B, Lu X, et al. 2010. Multifractal characteristics of soil pore structure under different tillage systems. Acta Pedologica Sinica, 47(06): 1094−1100. (in Chinese). DOI:10.11766/trxb200906190269.

  • 加载中

(7)

(4)

计量
  • 文章访问数:  16
  • PDF下载数:  5
  • 施引文献:  0
出版历程
收稿日期:  2024-10-10
录用日期:  2025-03-15
网络出版日期:  2025-08-08
刊出日期:  2025-09-15

目录