Are impermeable curtains necessary for a groundwater contaminant remediation project?
-
Abstract:
Constructing impermeable curtains to contain contaminant in aquifers is a costly and complex process that can impact the structure integrity of aquifer systems. Are impermeable curtains necessary for a groundwater contaminant remediation project? This study evaluates the necessity of impermeable curtains for groundwater contaminant remediation projects. Specifically, it considers remediation efforts based on the Pump and Treat (PAT) technique under various hydrogeological conditions and contaminant properties, comparing the total remediation cost and effectiveness. To further investigate, a multi-objective simulation and optimization model, utilizing the Multi-Objective Fast Harmony Search (MOFHS) algorithm, was employed to identify optimal groundwater remediation system designs that without impermeable curtains. Both a two-dimensional (2-D) hypothetical example and a three-dimensional (3-D) field example were used to assess the necessity of constructing impermeable curtains. The 2-D hypothetical example demonstrated that the installation of impermeable curtain is justified only when the dispersivity (αL) of the contaminant reaches 100 meters. In most cases, particularly at sites with porosity (n) under 0.3, alternative, more cost-effective, and efficient remediation strategies may be available, making impermeable barriers unnecessary. The optimization results of the 3-D field example further corroborate the conclusions derived from the 2-D hypothetical example. These findings provide valuable guidance for more scientifically informed, reasonable, and cost-effective groundwater contaminant remediation projects.
-
-
Table 1. Input parameters of flow and transport models for 2-D hypothetical example (Harbaugh AW and McDonald MG, 1996)
Parameters Value Specific yield (-) 0.2 Storage coefficient of S2 (-) 10−4 Aquifer thickness of S1 (m) 5 Aquifer thickness of S2 (m) 10 Average head of S1 and S2 (m) 9 Table 2. Cases settings and parameters for S1 and S2
Cases Parameters K (m/d) n (-) αL (m) Tre (d) Case1 1 0.2 50 365 Case2 5 0.2 50 365 Case3 10 0.2 50 365 Case4 5 0.1 50 365 Case5 5 0.3 50 365 Case6 5 0.2 25 365 Case7 5 0.2 100 365 Case8 5 0.2 50 180 Case9 5 0.2 50 730 Table 3. Calculation results of S1 and S2 under construction of impermeable curtains
Parameter Value (S1) Value (S2) p1 (CNY/m3) 100 100 p2 (CNY/m2) 400 (±50%) 400 (±50%) Q (×105 m3) 0.96 1.92 fPAT (Mio. CNY) 9.6 19.2 Area of impermeable curtain (×103 m2)
6.8 13.6 fCIC (Mio. CNY) 1.36–4.08 2.72–8.16 fT (Mio. CNY) 10.96–13.68 21.92–27.36 Table 4. Input parameters of the 3-D field example
Parameters Value Hydraulic conductivity of aquifer 1, 2 (m/d) 1.5 Porosity (-) 0.3 Specific yield (-) 0.2 Storage coefficient (-) 10−4 Dispersivity (m) 20 Aquifer thickness of aquifer 1 (m) 3 Aquifer thickness of aquifer 2 (m) 8 Remediation period (d) 200 -
Bader J, Zitzler E. 2011. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evolutionary Computation, 19: 45–76. DOI: 10.1162/EVCO_a_00009
Cao T, Zeng X, Wu J, et al. 2019. Groundwater contaminant source identification via Bayesian model selection and uncertainty quantification. Hydrogeology Journal, 27: 2907−2918. DOI:10.1007/s10040-019-02055-3.
Chang LC, Chu HJ, Hsiao CT. 2007. Optimal planning of a dynamic pump-treat-inject groundwater remediation system. Journal of Hydrology, 342: 295–304. DOI:10.1016/j.jhydrol.2007.05.030.
Deb K. 2001. Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction. DOI:10.1007/978-0-85729-652-8_1.
Deb K, Pratap A, Agarwal S, et al. 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6: 182−197. DOI:10.1109/4235.996017.
Elango L, Brindha K, Kalpana L, et al. 2012. Groundwater flow and radionuclide decay-chain transport modelling around a proposed uranium tailings pond in India. Hydrogeology Journal, 20: 797−812. DOI:10.1007/s10040-012-0834-6.
Fu F, Dionysiou DD, Liu H. 2014. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. Journal of Hazardous Materials, 267: 194−205. DOI:10.1016/j.jhazmat.2013.12.062.
Harbaugh, AW, ER Banta MC, Hill MG McDonald. 2000. MODFLOW-2000, the U. S. Geological Survey mod-ular ground-water model—User guide to modularizationconcepts and the ground-water flow process. USGS Open-File Report 00–92. Reston, Virginia: USGS. (Open-File Report).
Harbaugh AW, McDonald MG. 1996. Programmer's documentation for MODFLOW-96, an update to the U. S. Geological Survey Modular Finitedifference Ground-water Flow Model: U. S. Geological Survey Open-File Report: 96–486.
Gao JH, Wang YS, Li YB, et al. 2019. Design of the dewatering project of pit with pensile curtains in the floodplain area near Yangtze River. IOP Conference Series Earth and Environmental, 376: 012062. DOI:10.1088/1755-1315/376/1/012062.
Kim S, Lim H, Yoon S. 2017. A study on the impermeable effect by grouting in the Subsea Tunnel. Journal of Korean Geo-Environmental Society, 18: 5−19. DOI:10.14481/JKGES.2017.18.6.5.
Liu C, Chen X, Banwart SA, et al. 2021. A novel permeable reactive biobarrier for ortho-nitrochlorobenzene pollution control in groundwater: Experimental evaluation and kinetic modelling. Journal of Hazardous Materials, 420: 126563. DOI: 10.1016/j.jhazmat.2021.126563
Locatelli L, Binning PJ, Sanchez-Vila X, et al. 2019. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites. Journal of Contaminant Hydrology, 221: 35–49. DOI: 10.1016/j.jconhyd.2018.11.002
Luo Q, Wu JF, Sun X, et al. 2012. Optimal design of groundwater remediation systems using a multi-objective fast harmony search algorithm. Hydrogeology Journal, 20: 1497–1510. DOI: 10.1007/s10040-012-0900-0
Luo Q, Wu JF, Yang Y, et al. 2016. Multi-objective optimization of long-term groundwater monitoring network design using a probabilistic Pareto genetic algorithm under uncertainty. Journal of Hydrology, 534: 352–363. DOI:10.1016/j.jhydrol.2016.01.009.
Luo Q, Wang JF Yang Y, et al. 2014. Optimal design of groundwater remediation system using a probabilistic multi-objective fast harmony search algorithm under uncertainty. Journal of Hydrology, 519: 3305–3315. DOI:10.1016/j.jhydrol.2014.10.023.
Luo Q, Yang Y, Qian J, et al. 2020. Spring protection and sustainable management of groundwater resources in a spring field. Journal of Hydrology, 582: 124498. DOI:10.1016/j.jhydrol.2019.124498.
Lyu HM, Shen SL, Wu YX, et al. 2021. Calculation of groundwater head distribution with a close barrier during excavation dewatering in confined aquifer. Geoscience Frontiers, 12: 791–803. DOI: 10.1016/j.gsf.2020.08.002
Mattila V, Virtanen K. 2014. Maintenance scheduling of a fleet of fighter aircraft through multi-objective simulation-optimization. Simulation, 90: 1023–1040. DOI: 10.1177/0037549714540008
Mercer JW, Cohen RM. 1990. A review of immiscible fluids in the subsurface: Properties, models, characterization and remediation. Journal of Contaminant Hydrology, 6: 107–163. DOI:10.1016/0169-7722(90)90043-G.
Park YC. 2016. Cost-effective optimal design of a pump-and-treat system for remediating groundwater contaminant at an industrial complex. Geosciences Journal, 20: 891–901. DOI:10.1007/s12303-016-0030-0.
Rao SS. 1979. Optimization–theory and applications. International Journal for Numerical Methods in Engineering. DOI:10.1002/nme.1620141118.
Rodell M, Velicogna I, Famiglietti JS. 2009. Satellite-based estimates of groundwater depletion in India. Nature, 460: 999–1002. DOI:10.1038/nature08238.
Song J, Yang Y, Chen G, et al. 2019. Surrogate assisted multi-objective robust optimization for groundwater monitoring network design. Journal of Hydrology, 577: 123994. DOI:10.1016/j.jhydrol.2019.123994.
Song J, Yang Y, Wu JF, et al. 2018. Adaptive surrogate model based multiobjective optimization for coastal aquifer management. Journal of Hydrology, 561: 98–111. DOI:10.1016/j.jhydrol.2018.03.063.
Song YC. 2014. Research for seepage prevention type of dam foundation of Xiabandi hydraulic engineering in Xinjiang. Applied Mechanics and Materials, 501–504: 1942–1946. DOI: 10.4028/www.scientific.net/AMM.501-504.1942.
Tang Z, Song L, Jin D, et al. 2023. An engineering case history of the prevention and remediation of sinkholes induced by limestone quarrying. Sustainability, 15: 2808. DOI:10.3390/su15032808.
Vidic RD, Brantley SL, Vandenbossche JM, et al. 2013. Impact of shale gas development on regional water quality. Science, 340: 1235009. DOI:10.1126/science.1235009.
Wang N, Wang Q, Ye WM, et al. 2024. Research progress of microbial reinforcement technology. Hydrogeology & Engineering Geology, 51(5): 231−244. DOI:10.16030/j.cnki.issn.1000-3665.202401013.
Wang Z, Li W, Li Z, et al. 2020. Groundwater response to oil storage in large-scale rock caverns with a water curtain system: Site monitoring and statistical analysis. Tunnelling and Underground Space Technology, 99: 103363. DOI: 10.1016/j.tust.2020.103363
Wang Z, Yang Y, Wu JF, et al. 2022. Multi-objective optimization of the coastal groundwater abstraction for striking the balance among conflicts of resource-environment-economy in Longkou City, China. Water Resource, 211: 118045. DOI: 10.1016/j.watres.2022.118045
Warren V, Gary L, John W. 2002. Introduction to Hydrology.
Wu J, Zheng C, Chien CC. 2005. Cost-effective sampling network design for contaminant plume monitoring under general hydrogeological conditions. Journal of Contaminant Hydrology. 77: 41–65. DOI: 10.1016/j.jconhyd.2004.11.006
Yang K, Xu C, Chi M, et al. 2022. Analytical analysis of the groundwater drawdown difference induced by foundation pit dewatering with a suspended waterproof curtain. Applied Sciences, 12: 10301. DOI:10.3390/app122010301.
Yang Y, Luo Q, Ye G. 2018. Optimization of water allocation system at the river basins. Presented at the 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD).
Yang Y, Song J, Simmons CT, et al. 2021. A conjunctive management framework for the optimal design of pumping and injection strategies to mitigate seawater intrusion. Journal of Environmental Management, 282: 111964. DOI:10.1016/j.jenvman.2021.111964.
Yang Y, Wu JF, Luo Q, et al. 2017. Effects of stochastic simulations on multiobjective optimization of groundwater remediation design under uncertainty. Jouranl of Hydrologic Engineering, 22: 04017015. DOI:10.1061/(ASCE)HE.19435584.0001510.
Zheng C, Wang PP. 2003. A modular groundwater optimizer incorporating MODFLOW/MT3DMS. Documentation and user's guide. University of Alabama and Groundwater Systems Research Ltd. Tuscaloosa, AL.
Zheng C, Wang PP. 1999. MT3DMS: A modular three-dimensional multispecies transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems. Documentation and User's Guide. Contract Report SERDP-99-1. US Army Engineer Research and Development Center, Vicksburg, Mississippi, USA: 202.
Zong WG, Joong HK, Loganathan GV. 2001. A new heuristic optimization algorithm: Harmony search. Simulation, 76: 60−68. DOI:10.1177/003754970107600201.
-