中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Bahiraie Marsa, Hosseini Seiyed Mossa, Hossein-Panahi Bahareh. 2025. Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran. Journal of Groundwater Science and Engineering, 13(3): 268-285. doi: 10.26599/JGSE.2025.9280054
Citation: Bahiraie Marsa, Hosseini Seiyed Mossa, Hossein-Panahi Bahareh. 2025. Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran. Journal of Groundwater Science and Engineering, 13(3): 268-285. doi: 10.26599/JGSE.2025.9280054

Groundwater resources exploitation management in response to water scarcity challenges in Khuzestan Province, Iran

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Figure 9. 

    Figure 10. 

    Figure 11. 

    Figure 12. 

    Figure 13. 

    Figure 14. 

    Table 1.  Equation used to estimate groundwater quality indices.

    Index Reference
    GQIpiper(mix) = $ \left[\dfrac{({Ca}^{2+}+{Mg}^{2+})}{Totalcations}+\dfrac{({HCO}_{3}^-)}{Totalanions}\right]\times 50 $ (meq/l) (1) (Subramani et al. 2005)
    GQIpiper(dom)= $ \left[\dfrac{({Na}^{+}+{K}^{+})}{Totalcations}+\dfrac{({HCO}_{3}^-)}{Totalanions}\right]\times 50 $ (meq/l) (2)
    SAR=$ \dfrac{{Na}^{+}}{\sqrt{{Ca}^{2+}+{Mg}^{2+}}} $ (3) (Richards, 1954)
    KR=$ {Na}^{+}/({Ca}^{2+}+{Mg}^{2+}) $ (4) (Kelly, 1957)
    Na%= $ \left\{\dfrac{{Na}^{+}+{K}^{+}}{{Na}^{+}+{K}^{+}+{Ca}^{2+}+{Mg}^{2+}}\right\} $ (5) (Willcox, 1955)
    MAR=$ ({Mg}^{2+}*100)/({Ca}^{2+}+{Mg}^{2+}) $ (6) (Paliwal,1972)
    PI= $ \dfrac{{Na}^{+}+\sqrt{{HCO}_{3}^-}}{{Ca}^{2+}+{Mg}^{2+}+{Na}^{+}}*100 $ (7) (Doneen, 1964)
    下载: 导出CSV

    Table 2.  Ionic types and hydrochemical facies of groundwater samples collected during summer (n = 204) based on plots of hydrochemical data on Piper diagram

    Groundwater chemical facies Aquifer (No. and name)
    Ca-Cl 12 Aquifers:

    Ahodasht, Ahwaz shomali, Avan, Behbahan, Jaiezan, Chenane khesraj, Daloon midavood, Ramhormoz, Seidon, Gotvand aghili, Mianab shishtar, Dahsheikh

    Ca-Mg-HCO3 5 Aquifers:
    Baghmalek, Dezful andimeshk, Lali, Iezih pion, Morghab
    Na-Cl 2 Aquifers:
    Zeidon, Masjed soleiman
    下载: 导出CSV

    Table 3.  GQI piper (mix) and GQI (Dom) to determine hydrogeochemical domains

    Domain GQIpiper(mix) GQIpiper(dom) Percentage of samples /% Aquifers
    I (Ca-HCO3) 50–100 25–75 25% Baghmalek, Dezful andimeshk, Morghab, Iezh pion, Lali
    II (Na-Cl) 0–50 25–75 14% Zeidon, Masjed soleyman
    III (Ca-Na-HCO3) 25–75 50–75 - -
    IV (Ca-Mg-Cl) 25–75 25–50 28% Dezful andimeshk, Zeidon, Gotvand aghili, Baghmalek
    V (Ca-Cl) 25–75 0–25 33%

    Ahodasht, Ahvaz shomali, Avan, Behbahan, Jaiezan, Chenane khesraj, Daloon midavood, Ramhormoz, Seidon, Mianab shushtar

    VI (Na-HCO3) 25–75 75–100 - -
    下载: 导出CSV

    Table 4.  Classification of ground water samples based on irrigation water quality (IWQ) parameters.

    IWQ Parameters Range Class Number of samples Percentage /%
    EC <250 Excellent 0 0
    250–750 Good 49 24
    750–2000 Permissible 50 25
    2000–3000 Doubtful 35 17
    >3000 Unsuitable 70 34
    SAR <10 Excellent 204 100
    10–18 Good 0 0
    18–26 Permissible 0 0
    >26 Doubtful 0 0
    Na% <20 Excellent 78 38
    20–40 Good 82 42
    40–60 Permissible 33 15
    60–80 Doubtful 9 5
    >80 Unsuitable 2 0
    MAR >50% Suitable 70 34
    <50% Unsuitable 134 66
    KR <1 Suitable 182 89
    >1 Unsuitable 22 11
    PI >75% Good 135 66
    25–75 Suitable 55 27
    <25% Unsuitable 14 7
    Na+ <3 None 204 100
    3–9 Moderate 0 0
    >9 Severe 0 0
    Cl (mg/L) <140 None 204 100
    140–350 Moderate 0 0
    >350 Severe 0 0
    下载: 导出CSV
  • Abbasi F, Sohrab F, Abbasi N. 2017. Evaluation of irrigation efficiencies in Iran. Irrigation and Drainage Structures Engineering Research, 17(67): 113–120. https://idser.areeo.ac.ir/article_109617_en.html

    Abbasnia A, Yousefi N, Mahvi AH, et al. 2019. Evaluation of groundwater quality using water quality index and its suitability for assessing water for drinking and irrigation purposes: Case study of Sistan and Baluchistan province (Iran). Human and Ecological Risk Assessment: An International Journal, 25(4): 988−1005. DOI:10.1080/10807039.2018.1458596.

    Alavi N, Zaree E, Hassani M, et al. 2016. Water quality assessment and zoning analysis of Dez eastern aquifer by Schuler and Wilcox diagrams and GIS. Desalination and Water Treatment, 57: 1−12. DOI:10.1080/19443994.2015.1137786.

    Almodaresi S, Mohammadrezaei M, Dolatabadi M, et al. 2019. Qualitative analysis of groundwater quality indicators based on Schuler and Wilcox Diagrams: IDW and Kriging Models. Journal of Environmental Health and Sustainable Development, 4. DOI:10.18502/jehsd.v4i4.2023.

    Ayisa A, Atlabachew A, Ersulo AA, et al. 2022. Groundwater quality mapping for drinking and irrigation purposes using statistical, hydrochemical facies, and water quality indices in Tercha District, Dawuro Zone, Southern Ethiopia. Journal of Degraded and Mining Lands Management, 9: 3367−3377. DOI:10.15243/jdmlm.2022.092.3367.

    Baghalian K, Haghiry A, Naghavi MR, et al. 2008. Effect of saline irrigation water on agronomical and phytochemical characters of chamomile (Matricaria recutita L.). Scientia Horticulturae, 116(4): 437−441. DOI:10.1016/j.scienta.2008.02.014.

    Bhunia GS, Keshavarzi A, Shit PK, et al. 2018. Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science, 8(6): 168. DOI:10.1007/s13201-018-0795-6.

    Center for Iranian Studies (IRAM). Overview of the water crisis in Khuzestan, 2022. https://iramcenter.org/en/overview-of-the-water-crisis-in-khuzestan_en-705.

    Chidambaram S, Prasanna MV, Venkatramanan S, et al. 2022. Groundwater quality assessment for irrigation by adopting new suitability plot and spatial analysis based on fuzzy logic technique. Environmental research, 204: 111729. DOI:10.1016/j.envres.2021.111729.

    Doneen LD. 1964. Water quality for agriculture. Department of Irrigation, University of California, California, 48.

    Ehya F, Saeedi F. 2019. Assessment of groundwater quality in the Garmez area (Southeastern Khuzestan province, SW Iran) for drinking and irrigation uses. Carbonates and Evaporites, 34(4): 1443−1454. DOI:10.1007/s13146-018-0481-7.

    Elango L, Kannan R. 2007. Chapter 11 Rock–water interaction and its control on chemical composition of groundwater. In D. Sarkar, R. Datta, and R. B. T. -D. In E. S. Hannigan (Eds.), Concepts and Applications in Environmental Geochemistry (5: 229–243). Elsevier. DOI:10.1016/S1474-8177(07)05011-5.

    Famiglietti J, Lo MH, Ho S, et al. 2011. Satellites measure recent rates of groundwater depletion in California's Central Valley. Geophysical Research Letters - Geophys Res Lett, 38. DOI:10.1029/2010GL046442.

    Gibbs RJ. 1970. Mechanisms controlling world water chemistry. Science, 170(3962): 1088−1090. DOI:10.1126/science.170.3962.1088.

    Hosseininia M, Hassanzadeh R. 2023. Groundwater quality assessment for domestic and agricultural purposes using GIS, hydrochemical facies and water quality indices: case study of Rafsanjan plain, Kerman province, Iran. Applied Water Science, 13(3): 84. DOI:10.1007/s13201-023-01891-9.

    Kareem Hayder H, Nassrullah SA. 2025. Impact of climate changes on Arizona State precipitation patterns using high-resolution climatic gridded datasets. Journal of Groundwater Science and Engineering, 13(1): 34−46. DOI:10.26599/JGSE.2025.9280037.

    Kelly WP. 1957. Adsorbed sodium cation exchange capacity and percentage sodium sorption in alkali soils. Science, 84: 473−477.

    Khuzestan Water and Power Authority, KWPA. 2021. Water Resources of KHP. https://www.kwpa.ir

    Liang CP, Hsu WS, Chien YC, et al. 2019. The combined use of groundwater quality, drawdown index and land use to establish a multi-purpose groundwater utilization plan. Water Resources Management, 33: 4231−4247. DOI:10.1007/s11269-019-02360-2.

    McKee TB, Doesken NJ, Kleist J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, 17: 179–183. https://api.semanticscholar.org/CorpusID:129950974

    Meteorological Organization. 2021. Hydrology and water resources status of KHP in the year 2021 https://www.irimo.ir/eng/index.php

    Meybeck M. 1987. Global chemical weathering of surficial rocks estimated from river dissolved loads. American Journal of Science, 287(5): 401−428. DOI:10.2475/ajs.287.5.401.

    Mohammadi A, Yaghmaeian K, Hossein F, et al. 2017. Temporal and spatial variation of chemical parameter concentration in drinking water resources of Bandar-e Gaz City using Geographic Information System. Desalination And Water Treatment, 68: 170−176. DOI:10.5004/dwt.2017.20341.

    Nazemi A, Madani K. 2018. Urban water security: Emerging discussion and remaining challenges. Sustainable Cities and Society, 41: 925−928. DOI:10.1016/j.scs.2017.09.011.

    Office of Basic Studies of Iran Water Resources Management Company. 2021. Natural Characterization of the KHP. http://wrs.wrm.ir

    Paliwal KV. 1972. Irrigation with saline water. New Delhi.

    Piper AM. 1944. A graphic procedure in the geochemical interpretation of water-analyses. Eos, Transactions American Geophysical Union, 25(6): 914–928. DOI:10.1029/TR025i006p00914.

    Qin Y, Mueller N, Siebert S, et al. 2019. Flexibility and intensity of global water use. Nature Sustainability, 2: 515−523. DOI:10.1038/s41893-019-0294-2.

    Richards LA. 1954. Diagnosis and improvement of saline and alkali Soils. Soil Science, 78(2). https://journals.lww.com/soilsci/fulltext/1954/08000/diagnosis_and_improvement_of_saline_and_alkali.12.aspx

    Rogers RJ. 1989. Geochemical comparison of ground water in areas of New England, New York, and Pennsylvania. Groundwater, 27(5): 690−712. DOI:10.1111/j.1745-6584.1989.tb00483.x.

    Sarath Prasanth SV, Magesh NS, Jitheshlal KV, et al. 2012. Evaluation of groundwater quality and its suitability for drinking and agricultural use in the coastal stretch of Alappuzha District, Kerala, India. Applied Water Science, 2(3): 165−175. DOI:10.1007/s13201-012-0042-5.

    Schoeller H. 1977. Geochemistry of groundwater. Groundwater studies, an international guide for research and practice. UNESCO, 1–18.

    Shakour S, Chitsazan M, Mirzaee SY. 2023. Zonation of groundwater quality in terms of drinkability, using Fuzzy Logic and Schoeller deterministic method for Northern Dezful - Andimeshk Plain, Iran. Discover Water, 3(1): 22. DOI:10.1007/s43832-023-00046-w.

    Sharifi Mahmoud. 2012. Spatial Planning Report: Natural Resources and Water Resources of Khozestan Province. Iran's Urban Planning and Architecture Studies and Research Center: 301.

    Singh J, Sehgal S, Singh K, et al. 2022. An approach to evaluate groundwater quality in the vicinity of three tributaries of the Beas River, North-West India. Applied Water Science, 12. DOI:10.1007/s13201-021-01541-y.

    Soltani A, Soltani M, Solaimani K. 2018. Groundwater quality assessment of Shush Country for drinking. Iranian Journal of Ecohydrology, 5(4): 1135−1146. DOI:10.22059/ije.2018.257339.873.

    Subramani TFL, Damodarasamy SR. 2005. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environmental Geology, 47: 1099−1110. DOI:10.1007/s00254-005-1243-0.

    Suter J, Rouhi Rad M, Manning D, et al. 2019. Groundwater depletion, climate, and the incremental value of groundwater. Resource and Energy Economics, 63: 101143. DOI:10.1016/j.reseneeco.2019.101143.

    Tarawneh MSM, Janardhana MR, Ahmed MM. 2019. Hydrochemical processes and groundwater quality assessment in North eastern region of Jordan valley, Jordan. HydroResearch, 2: 129−145. DOI:10.1016/j.hydres.2020.02.001.

    Techniques MS, Alrowais R, Abdel MM, et al. 2023. Groundwater quality assessment for drinking and irrigation purposes at Al-Jouf Area in KSA Using Artificial Neural. DOI:10.3390/w15162982.

    Tiwari R. 2011. Assessment of groundwater quality and pollution potential of Jawa Block Rewa District, Madhya Pradesh, India. Proceedings of the International Academy of Ecology and Environmental Science, 1.

    Tomaszkiewicz M, Abou Najm M, El-Fadel M. 2014. Development of a groundwater quality index for seawater intrusion in coastal aquifers. Environmental Modelling and Software, 57: 13–26. DOI:10.1016/j.envsoft.2014.03.010.

    Valipour H, Sayari M, Bayat N, et al. 2014. Qualitative and quantitative evaluation of groundwater in Isfahan Najaf Abad study area. Journal of Middle East Applied Science and Technology, 16: 2225−2305.

    World Water Quality Alliance. 2021. Assessing groundwater quality: A global perspective: Importance, methods and potential data sources. A Report by the Friends of Groundwater in the World Water Quality Alliance, 60. https://groundwater-quality.org/friends-groundwater-produce-perspective-paper-groundwater-quality

    Willcox L. 1955. Classification and use of irrigation. Washington: United States Department of Agriculture. Circular: 969.

    Yang X, Blagodatsky S, Lippe M, et al. 2016. Land-use change impact on time-averaged carbon balances: Rubber expansion and reforestation in a biosphere reserve, South-West China. Forest Ecology and Management, 372: 149−163. DOI:10.1016/j.foreco.2016.04.009.

    Yellapu S, Bekkam VR. 2018. Depletion and groundwater balance studies of Kandivalasa River Sub Basin, VizianagarGroundwateram District, and Andhra Pradesh, India. Groundwater for Sustainable Development, 6: 71−78. DOI:10.1016/j.gsd.2017.11.003.

    Zakir-Hassan G, Punthakey Jehangir F, Shabir G, et al. 2024. Assessing the potential of underground storage of flood water: A case study from Southern Punjab Region in Pakistan. Journal of Groundwater Science and Engineering, 12(4): 387−396. DOI:10.26599/JGSE.2024.9280029.

    Zekri S. 2020. Water Policies in MENA Countries. DOI:10.1007/978-3-030-29274-4.

  • 加载中

(14)

(4)

计量
  • 文章访问数:  28
  • PDF下载数:  6
  • 施引文献:  0
出版历程
收稿日期:  2024-08-11
录用日期:  2025-04-30
网络出版日期:  2025-08-08
刊出日期:  2025-09-15

目录