Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau
-
Abstract:
The Zoige Plateau, situated on the eastern edge of the Qinghai-Tibet Plateau, exhibits complex groundwater dynamics influenced by alpine hydrological processes and climatic variability. This study investigates the spatiotemporal evolution of groundwater in the Zoige alpine basin from 2002 to 2024 using an integrated approach that combines in-situ monitoring, GRACE satellite observations, and GLDAS model outputs. Using the Innovative Trend Analysis (ITA) method alongside conventional statistical techniques, we identified both seasonal fluctuations and long-term depletion trends. Groundwater levels exhibited clear wet–dry season contrasts and a cumulative decline of up to 2.3 m in grassland flatlands, corresponding to a long-term depletion rate of 0.4 cm/a as indicated by GRACE-derived groundwater storage. The most significant declines occurred in grassland zones, driven by wetland degradation and elevated evapotranspiration, while mountain regions showed slower losses (~0.1 cm/a) primarily supported by sustained snowmelt recharge. Through the integration of multi-source datasets, this study highlights the spatial heterogeneity and key drivers of groundwater variation, providing a robust framework for sustainable groundwater management under climatic and anthropogenic pressures in alpine wetland systems.
-
Key words:
- Zoige Plateau /
- Groundwater dynamics /
- GRACE /
- Spatiotemporal variation /
- Climate change
-
-
Table 1. Mann-Kendall, Linear regression (LRM), and ITA trend test results
Area Monitoring point b z ITA slope Wet season Dry season Entire year Northeastern high mountain area JC03 −0.02277 −0.03453 0.00137 0.00290 0.00211 JC04 −0.00655 −0.00566 −0.00131 −0.00028 −0.00068 JC05 −0.01452 0.01140 −0.00376 0.00021 −0.00231 JC11 −0.00590 −0.00521 −0.00065 −0.00003 −0.00049 JC12 −0.06105 −0.08020 −0.00806 −0.00317 −0.00591 JC13 0.00689 −0.00550 −0.00180 0.00097 −0.00071 JC14 −0.01140 −0.01177 −0.00127 −0.00087 −0.00109 JC15 −0.00738 −0.00913 −0.00132 −0.00049 −0.00140 Zoige grassland flat area JC07 −0.00979 −0.00769 −0.00141 −0.00036 −0.00106 JC08 −0.01227 −0.00978 −0.00139 −0.00054 −0.00108 JC09 −0.00509 −0.00699 −0.00105 −0.00019 −0.00072 JC18 −0.00633 −0.00404 −0.00026 −0.00027 −0.00023 JC20 −0.00226 −0.00365 −0.00025 0.00047 0.00013 JC21 −0.00682 −0.00525 −0.00085 −0.00006 −0.00050 JC23 0.02906 0.02519 −0.00020 −0.00146 −0.00174 JC25 −0.01300 −0.01246 0.00059 0.00159 0.00054 Southern high mountain area JC27 −0.00693 −0.00801 −0.00164 −0.00074 −0.00089 JC45 −0.01602 −0.01501 −0.00225 −0.00110 −0.00152 JC46 −0.00171 −0.00161 −0.00056 −0.00049 −0.00015 JC47 −0.00404 0.00251 −0.00026 0.00073 −0.00011 White River valley area JC28 −0.00296 0.00423 −0.00203 0.00027 −0.00048 JC30 −0.00121 0.00300 −0.00141 0.00004 −0.00026 JC31 −0.00283 −0.00263 −0.00075 0.00112 0.00040 JC34 −0.00103 −0.00114 −0.00006 0.00035 0.00036 JC37 −0.00468 −0.00529 −0.00122 −0.00049 −0.00048 JC39 −0.00331 −0.00417 −0.00097 −0.00041 −0.00038 JC41 −0.00862 −0.00834 −0.00100 −0.00080 −0.00064 JC44 0.00253 −0.00394 −0.00101 −0.00027 −0.00054 Note: In the table, b represents the Sen's slope estimate derived from the M-K test, z denotes the slope value from linear regression (LRM). Cells shaded in gray indicate negative values (i.e. declining trends). -
Bao W, Duan AM, You QL, et al. 2024. Research progress on climate change and its impact on water resources over the Tibetan Plateau. Climate Change Research, 20(2): 158−169. (in Chinese) DOI:10.12006/j.issn.1673-1719.2023.247.
Beaudon E, Gabrielli P, Sierra-Hernández MR, et al. 2017. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core. Science of the Total Environment, 601: 1349−1363. DOI:10.1016/j.scitotenv.2017.05.195.
Bookhagen B, Burbank DW. 2010. Toward a complete himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3). DOI:10.1029/2009jf001426.
Chen FH, Zhang JF, Liu JB, et al. 2020. Climate change vegetation history and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 243: 106444. DOI:10.1016/j.quascirev.2020.106444.
Chen FH, Fu BJ, Xia J, et al. 2019. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 62: 1665−1701. DOI:10.1007/s11430-019-9522-7.
Chowdari KK, Deb Barma S, Bhat N, et al. 2023. Trends of seasonal and annual rainfall of semi-arid districts of Karnataka, India: application of innovative trend analysis approach. Theoretical and Applied Climatology, 152: 241−264. DOI:10.1007/s00704-023-04400-9.
Deng C, Zhang BQ, Cheng LY, et al. 2019. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agricultural and Forest Meteorology, 275: 79−90. DOI:10.1016/j.agrformet.2019.05.012.
Gleeson T, Cuthbert M, Ferguson G, et al. 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48: 431−463. DOI:10.1146/annurev-earth-071719-055251.
Huss M, Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8: 135−140. DOI:10.1038/s41558-017-0049-x.
Immerzeel WW, Van Beek LPH, Bierkens MFP. 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382−1385. DOI:10.1126/science.1183188.
IPCC. 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/
Kang S, Xu Y, You Q, et al. 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1): 015101. DOI:10.1088/1748-9326/5/1/015101.
Li B, Yu Z, Liang Z, et al. 2014. Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau. Journal of Hydrologic Engineering, 19(5): 1026−1035. DOI:10.1061/(ASCE)HE.1943-5584.0000868.
Li Z, Gao P, You Y. 2018. Characterizing hydrological connectivity of artificial ditches in Zoige Peatlands of Qinghai-Tibet Plateau. Water, 10(10): 1364. DOI:10.3390/w10101364.
Minea I, Boicu D, Chelariu OE. 2020. Detection of groundwater levels trends using innovative trend analysis method in temperate climatic conditions. Water, 12(8): 2129. DOI:10.3390/w12082129.
Maxwell RM, Condon LE. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353(6297): 377−380. DOI:10.1126/science.aaf7891.
Rodell M, Houser PR, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381−394. DOI:10.1175/BAMS-85-3-381.
Seenu PZ, Jayakumar KV. 2021. Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14: 1−15. DOI:10.1007/s12517-021-06906-w.
Sen Z. 2012. Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9): 1042−1046. DOI:10.1061/(ASCE)HE.1943-5584.0000556.
Shen G, Yang X, Jin Y, et al. 2019. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecological Indicators, 104: 48−58. DOI:10.1016/j.ecolind.2019.04.063.
Smith LC, Sheng Y, MacDonald GM, et al. 2005. Disappearing Arctic lakes. Science, 308(5727): 1429. DOI:10.1126/science.1108142.
Soncini A, Bocchiola D, Azzoni RS, et al. 2017. A methodology for monitoring and modeling of high altitude alpine catchments. Progress in Physical Geography, 41(4): 393−420. DOI:10.1177/0309133317710832.
Swain S, Sahoo S, Taloor AK, et al. 2022. Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundwater for Sustainable Development, 18: 100783. DOI:10.1016/j.gsd.2022.100783.
Yang M, Wang X, Pang G, et al. 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353−369. DOI:10.1016/j.earscirev.2018.12.018.
Zakwan M. 2021. Trend analysis of groundwater level using innovative trend analysis. In: Pande, C.B., Moharir, K.N. (eds) Groundwater Resources Development and Planning in the Semi-Arid Region. Springer, Cham. DOI:10.1007/978-3-030-68124-1_20.
Zhao L, Hu GJ, Zou DF, et al. 2019. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233−1246. (in Chinese) DOI:10.16418/j.issn.1000-3045.2019.11.006.
-