中国地质科学院水文地质环境地质研究所主办
Groundwater Science and Engineering Limited出版
Liu Yong, Huang An-bang, Liu Hao, Peng Bo, Zhang Xin, HUANG Qinqin. 2025. Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau. Journal of Groundwater Science and Engineering, 13(3): 286-300. doi: 10.26599/JGSE.2025.9280055
Citation: Liu Yong, Huang An-bang, Liu Hao, Peng Bo, Zhang Xin, HUANG Qinqin. 2025. Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau. Journal of Groundwater Science and Engineering, 13(3): 286-300. doi: 10.26599/JGSE.2025.9280055

Dynamic evolution characteristics and influencing mechanisms of groundwater in the Zoige Plateau

More Information
  • 加载中
  • Figure 1. 

    Figure 2. 

    Figure 3. 

    Figure 4. 

    Figure 5. 

    Figure 6. 

    Figure 7. 

    Figure 8. 

    Table 1.  Mann-Kendall, Linear regression (LRM), and ITA trend test results

    Area Monitoring point b z ITA slope
    Wet season Dry season Entire year
    Northeastern high mountain area JC03 −0.02277 −0.03453 0.00137 0.00290 0.00211
    JC04 −0.00655 −0.00566 −0.00131 −0.00028 −0.00068
    JC05 −0.01452 0.01140 −0.00376 0.00021 −0.00231
    JC11 −0.00590 −0.00521 −0.00065 −0.00003 −0.00049
    JC12 −0.06105 −0.08020 −0.00806 −0.00317 −0.00591
    JC13 0.00689 −0.00550 −0.00180 0.00097 −0.00071
    JC14 −0.01140 −0.01177 −0.00127 −0.00087 −0.00109
    JC15 −0.00738 −0.00913 −0.00132 −0.00049 −0.00140
    Zoige grassland flat area JC07 −0.00979 −0.00769 −0.00141 −0.00036 −0.00106
    JC08 −0.01227 −0.00978 −0.00139 −0.00054 −0.00108
    JC09 −0.00509 −0.00699 −0.00105 −0.00019 −0.00072
    JC18 −0.00633 −0.00404 −0.00026 −0.00027 −0.00023
    JC20 −0.00226 −0.00365 −0.00025 0.00047 0.00013
    JC21 −0.00682 −0.00525 −0.00085 −0.00006 −0.00050
    JC23 0.02906 0.02519 −0.00020 −0.00146 −0.00174
    JC25 −0.01300 −0.01246 0.00059 0.00159 0.00054
    Southern high mountain area JC27 −0.00693 −0.00801 −0.00164 −0.00074 −0.00089
    JC45 −0.01602 −0.01501 −0.00225 −0.00110 −0.00152
    JC46 −0.00171 −0.00161 −0.00056 −0.00049 −0.00015
    JC47 −0.00404 0.00251 −0.00026 0.00073 −0.00011
    White River valley area JC28 −0.00296 0.00423 −0.00203 0.00027 −0.00048
    JC30 −0.00121 0.00300 −0.00141 0.00004 −0.00026
    JC31 −0.00283 −0.00263 −0.00075 0.00112 0.00040
    JC34 −0.00103 −0.00114 −0.00006 0.00035 0.00036
    JC37 −0.00468 −0.00529 −0.00122 −0.00049 −0.00048
    JC39 −0.00331 −0.00417 −0.00097 −0.00041 −0.00038
    JC41 −0.00862 −0.00834 −0.00100 −0.00080 −0.00064
    JC44 0.00253 −0.00394 −0.00101 −0.00027 −0.00054
    Note: In the table, b represents the Sen's slope estimate derived from the M-K test, z denotes the slope value from linear regression (LRM). Cells shaded in gray indicate negative values (i.e. declining trends).
    下载: 导出CSV
  • Bao W, Duan AM, You QL, et al. 2024. Research progress on climate change and its impact on water resources over the Tibetan Plateau. Climate Change Research, 20(2): 158−169. (in Chinese) DOI:10.12006/j.issn.1673-1719.2023.247.

    Beaudon E, Gabrielli P, Sierra-Hernández MR, et al. 2017. Central Tibetan Plateau atmospheric trace metals contamination: A 500-year record from the Puruogangri ice core. Science of the Total Environment, 601: 1349−1363. DOI:10.1016/j.scitotenv.2017.05.195.

    Bookhagen B, Burbank DW. 2010. Toward a complete himalayan hydrological budget: spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. Journal of Geophysical Research: Earth Surface, 115(F3). DOI:10.1029/2009jf001426.

    Chen FH, Zhang JF, Liu JB, et al. 2020. Climate change vegetation history and landscape responses on the Tibetan Plateau during the Holocene: A comprehensive review. Quaternary Science Reviews, 243: 106444. DOI:10.1016/j.quascirev.2020.106444.

    Chen FH, Fu BJ, Xia J, et al. 2019. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects. Science China Earth Sciences, 62: 1665−1701. DOI:10.1007/s11430-019-9522-7.

    Chowdari KK, Deb Barma S, Bhat N, et al. 2023. Trends of seasonal and annual rainfall of semi-arid districts of Karnataka, India: application of innovative trend analysis approach. Theoretical and Applied Climatology, 152: 241−264. DOI:10.1007/s00704-023-04400-9.

    Deng C, Zhang BQ, Cheng LY, et al. 2019. Vegetation dynamics and their effects on surface water-energy balance over the Three-North Region of China. Agricultural and Forest Meteorology, 275: 79−90. DOI:10.1016/j.agrformet.2019.05.012.

    Gleeson T, Cuthbert M, Ferguson G, et al. 2020. Global groundwater sustainability, resources, and systems in the Anthropocene. Annual Review of Earth and Planetary Sciences, 48: 431−463. DOI:10.1146/annurev-earth-071719-055251.

    Huss M, Hock R. 2018. Global-scale hydrological response to future glacier mass loss. Nature Climate Change, 8: 135−140. DOI:10.1038/s41558-017-0049-x.

    Immerzeel WW, Van Beek LPH, Bierkens MFP. 2010. Climate change will affect the Asian water towers. Science, 328(5984): 1382−1385. DOI:10.1126/science.1183188.

    IPCC. 2021. Climate change 2021: The physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/ar6/wg1/

    Kang S, Xu Y, You Q, et al. 2010. Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 5(1): 015101. DOI:10.1088/1748-9326/5/1/015101.

    Li B, Yu Z, Liang Z, et al. 2014. Effects of climate variations and human activities on runoff in the Zoige alpine wetland in the eastern edge of the Tibetan Plateau. Journal of Hydrologic Engineering, 19(5): 1026−1035. DOI:10.1061/(ASCE)HE.1943-5584.0000868.

    Li Z, Gao P, You Y. 2018. Characterizing hydrological connectivity of artificial ditches in Zoige Peatlands of Qinghai-Tibet Plateau. Water, 10(10): 1364. DOI:10.3390/w10101364.

    Minea I, Boicu D, Chelariu OE. 2020. Detection of groundwater levels trends using innovative trend analysis method in temperate climatic conditions. Water, 12(8): 2129. DOI:10.3390/w12082129.

    Maxwell RM, Condon LE. 2016. Connections between groundwater flow and transpiration partitioning. Science, 353(6297): 377−380. DOI:10.1126/science.aaf7891.

    Rodell M, Houser PR, Jambor U, et al. 2004. The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3): 381−394. DOI:10.1175/BAMS-85-3-381.

    Seenu PZ, Jayakumar KV. 2021. Comparative study of innovative trend analysis technique with Mann-Kendall tests for extreme rainfall. Arabian Journal of Geosciences, 14: 1−15. DOI:10.1007/s12517-021-06906-w.

    Sen Z. 2012. Innovative trend analysis methodology. Journal of Hydrologic Engineering, 17(9): 1042−1046. DOI:10.1061/(ASCE)HE.1943-5584.0000556.

    Shen G, Yang X, Jin Y, et al. 2019. Remote sensing and evaluation of the wetland ecological degradation process of the Zoige Plateau Wetland in China. Ecological Indicators, 104: 48−58. DOI:10.1016/j.ecolind.2019.04.063.

    Smith LC, Sheng Y, MacDonald GM, et al. 2005. Disappearing Arctic lakes. Science, 308(5727): 1429. DOI:10.1126/science.1108142.

    Soncini A, Bocchiola D, Azzoni RS, et al. 2017. A methodology for monitoring and modeling of high altitude alpine catchments. Progress in Physical Geography, 41(4): 393−420. DOI:10.1177/0309133317710832.

    Swain S, Sahoo S, Taloor AK, et al. 2022. Exploring recent groundwater level changes using Innovative Trend Analysis (ITA) technique over three districts of Jharkhand, India. Groundwater for Sustainable Development, 18: 100783. DOI:10.1016/j.gsd.2022.100783.

    Yang M, Wang X, Pang G, et al. 2019. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Science Reviews, 190: 353−369. DOI:10.1016/j.earscirev.2018.12.018.

    Zakwan M. 2021. Trend analysis of groundwater level using innovative trend analysis. In: Pande, C.B., Moharir, K.N. (eds) Groundwater Resources Development and Planning in the Semi-Arid Region. Springer, Cham. DOI:10.1007/978-3-030-68124-1_20.

    Zhao L, Hu GJ, Zou DF, et al. 2019. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet plateau. Bulletin of Chinese Academy of Sciences, 34(11): 1233−1246. (in Chinese) DOI:10.16418/j.issn.1000-3045.2019.11.006.

  • 加载中

(8)

(1)

计量
  • 文章访问数:  29
  • PDF下载数:  11
  • 施引文献:  0
出版历程
收稿日期:  2024-10-20
录用日期:  2025-04-16
网络出版日期:  2025-08-08
刊出日期:  2025-09-15

目录