SEA FLOOR TOPOGRAPHY OF SHALLOW GAS HYDRATE AREA——DATA FROM OKHOTSK SEA
-
摘要: 使用重力取样器、渔网、深潜器等手段,已经在海底及以下浅表层的区域采获天然气水合物样品,但关于浅表层水合物的发育机制、分布规律、与海底地形的关系等问题还缺乏基本认识。根据2006年鄂霍次克海天然气水合物调查航次的调查数据,发现萨哈林东北陆坡区,特别是中、下陆坡区发育大量海底凸起。这些凸起一般呈不对称的丘形,宽几百米,高几十米。与海底沙波、沙脊不同,海底凸起为孤立海底地形,在南北方向上并不连续。海底剖面仪结果清楚地显示古陆坡凸起的发育。现今海底陆坡凸起的幅度普遍地要小于古陆坡凸起的幅度,个别地方古今陆坡凸起的形态有所变化,但大部分古、今陆坡凸起是一一对应的,基本形态没有根本变化。在萨哈林陆坡地区存在两个方向的挤压应力场,分别是由德鲁根盆地向萨哈林陆坡方向的挤压应力场和萨哈林陆坡沿萨哈林走滑断裂向南的挤压应力场,海底陆坡凸起是这两大应力场复合作用的结果。浊反射区中的游离气是底辟构造中的超高压多相物质向上迁移形成的,浊反射区上方对应的海底凸起应该是宏观构造挤压和局部底辟发育叠合的结果,浊反射区上方的海底凸起,在形态等方面应该和其他仅由挤压构造原因形成的凸起有所区别,比如顶部发育裂口等。在底辟构造中,由于游离气体的向上迁移,在整个水合物稳定域中从下到上,直至海底都可能形成水合物。Abstract: Shallow gas hydrates have already been sampled by gravity corer, fishing net, and submersible machines on the sea floor and in the sediment near the sea floor. However the formation mechanism of shallow gas hydrate, its distribution and relationship with sea floor topography remain unclear. Based on the side scan sonar and sub-bottom profile data from the 2006 gas hydrate cruise in the Okhotsk Sea, we found that the occurrence of shallow gas hydrates are closely related to some domelike structures. Domelike structures are common on the slope, especially along the Middle and Lower Sakhalin Slope. They are about several hundred meters wide and several ten meters high. Different from sea floor sand waves and sand ridges, the domelike structures are isolated structures with a slightly longer lower wing and a shorter upper wing. Sub-bottom profile recorder showed that buried dome structures are also well developed on the slope beneath a 30 cm modern sediment layer. A joint compress stress field from the Deryugin basin to the Sakhalin Slope and from the north Sakhalin Slope to the South Sakhalin Slope along the strike slip fault on the Sakhalin Slope was the main cause of the formation of the dome structures, and the diapir structures among the dome structures. The acoustic turbidity beneath the diapir structures clearly show the migration of free gases from deep to the gas hydrate stability zone and to the sea water body from the mini crater on the top of the dome structures. Gas hydrates formed due to the availability of free gas within the diapir structures from the bottom of gas hydrate stability zone up to the sea floor.
-
Key words:
- shallow gas hydrate /
- sea floor topography /
- dome structure /
- diaper structure /
- acoustic turbidity
-
-
[1] Sloan E D.Clathrate Hydrates of Natural Gases[M].New York:Marcel Dekker,1990:641.
[2] Kvenvolden K A. Gas hydrate-geological perspective and global change[J]. Rev. Geophys., 1993, 31:173-187.
[3] MacDonald G T. The future of methane as an energy resource[J]. Annu. Rev. Energy, 1990,15:53-83.
[4] Milkov A V, Claypool G E, Lee Y J, et al. In sity methane concentrations at Hydrate Ridge Offshore Oregon:new constraints on the global gas hydrate inventory from an active margin[J]. Geology, 2003, 31:833-836.
[5] Riedel M, Long P E, Collett T S. Estimates of in situ gas hydrate concentration from resistivity monitoring of gas hydrate bearing sediments during temperature equilibration[J]. Marine Geology, 2006, 227:215-225.
[6] Shoji H,Soloviev V,Matveeva T. Hydrate-bearing structures in the Sea of Okhotsk[J]. Eos, 2005, 86:13-24.
[7] Hyndman R D, Dallimore R S. Natural gas hydrate studies in Canada[J]. Canadian Society of Exploration Geophysicists, 2001, 26:11-20.
[8] Torres M E, Bohrmann G, Brown K, et al. Geochemical observations on Hydrate Ridge, Cascadia Margin during R/V-ATLANTIS-Cruise AT335b, July 1999[M]. Oregon State University.
[9] Dallimore S R, Collett T S. Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada[J]. Geological Survey of Canada Bulletin, 2005, 585:1-140.
[10] 栾锡武,赵克斌,孙东胜,等.天然气水合物的开采——以马利克钻井为例[J].地球物理学进展,2007,22(4)1295-1304.
[LUAN Xiwu, ZHAO Kebin, SUN Dongsheng, et al. Gas hydrates production-in case of Mallik test well[J]. Progress in Geophysics (in Chinese),2007,22(4):1295-1304.]
[11] Suess E, Torres M E, Bohrmann. Sea floor methane hydrates at Hydrate Ridge, Cascadia margin[C]//Natural Gas Hydrates:Occurrence, Distribution and Detection (eds. Paull C K, Dillon W P). Washington DC:American Geophysical Union, 2001:99-113.
[12] Francisca F, Yun T S, Ruppel C,et al. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province[J]. Earth and Planetary Science Letters, 2005, 237(3-4):924-939.
[13] Charlou J L, Donval J P, Fouquet Y, et al. Physical and chemical characterization of gas hydrates and associated methane plumes in the Congo Angola Basin[J]. Chemical Geology,2004,205(3-4):405-425.
[14] Kudelkin V V, Savitskiy V O, Karpey T I. Structure and evolution of the sediment cover of the near Sakhalin areas of the South-Okhotsk Basin[J]. Geol. Pac. Ocean, 1986, 4:3-13.
[15] Ternois Y, Kawamura K, Keigwin L. A biomarker approach for assessing marine and terrigenous inputs to the sediments of Sea of Okhotsk for the last 27000 years[J]. Geochimica et Cosmochimica Acta, 2001, 65, (5):791-802.
[16] Gorbarenko S A, Southon J R, Keigwin L D. Late Pleistocene-Holocene oceanographic variability in the Okhotsk Sea:geochemical, lithological and paleontological evidence[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2004,209:281-301.
[17] Seki O, Yoshikawa C, Nakatsuka T. Fluxes, source and transport of organic matter in the western Sea of Okhotsk:Stable carbon isotopic ratios of n-alkanes and total organic carbon[J].Deep-Sea Research I, 2006, 53:253-270.
[18] Bogdanov N A, Chekhovich V D. On Collision between the West Kamchatka and Sea of Okhotsk Plate[J]. Geotectonics, 2002, 36:72-85.
[19] Rozhdestvenskiy S S. Evolution of the Sakhalin folds system[J]. Tectonophysics, 1986, 127:331-339.
[20] Ludmann T, Wong H K. Characteristics of gas hydrate occurrences associated with mud diapirism and gas escape structures in the northwestern Sea of Okhotsk[J]. Marine Geology,2003,201:269-286.
[21] Shakirov R, Obzhirov A, Suess E. Mud volcanoes and gas vents in the Okhotsk Sea area[J]. Geo-Mar Lett, 2004, 24:140-149.
[22] 栾锡武,赵克斌,孙东胜,等.鄂霍次克海天然气水合物的成藏条件分析[J].海洋地质与第四纪地质,2006,23(6):55-68.
[LUAN Xiwu, ZHAO Kebin, SUN Dongsheng, et al. Geological factors for the development of gas hydrates in Okhotsk Sea[J]. Marine Geology and Quaternary Geology, 2006, 23(6):55-68.]
[23] Jin Y K, Obzhirov A, Shoji H, et al. CHAOS Ⅲ Project Cruise Report:RV Akademik M.A. Lavrentiev Cruise 39, May 24-June 18, 2006[R]. Incheon:KORPRI, 2007, 132. ISSN978-89-990160.
[24] Garcia Gil S, Vilas F, Garcia Garcia A. Shallow gas features in incised valley fills(Ria de Vigo, NW Spain):A case study[J]. Continental Shelf Research, 2002, 22:2303-2315.
[25] Fannin N G T. The use of regional geological surveys in the North Sea and adjacent areas in recognition of offshore hazards[C]//In:Ardus D A, ed. Offshore Site Investigation. London:Graham &Trotman, 1980:5-21.
[26] 王海荣,王英民,丘燕,等.南海北部大陆边缘深水环境的沉积物波[J].自然科学进展,2007,17(9):1235-1243.
[WANG Hairong, WANG Yingmin, QIU Yan, et al. The deepwater sediment waves in the northern margin of northern South China Sea[J]. Progress in Natural Science, 2007, 17(9):1235-1243.]
[27] 钟广法,李前裕,郝沪军,等.深水沉积物波及其在南海研究之现状[J].地球科学进展,2007,22(9):907-913.
[ZHONG Guangfa, LI Qianyu, HAO Hujun, et al. Current status of deepwater sediment wave studies and the South China Sea perspectives[J]. Advances in Earth Science, 2007, 22(9):907-913.]
[28] 刘家喧.台湾海域新生代的大地构造[C]//见黄奇瑜主编.台湾大地构造.台北:中国地质学会,2002:1-48.[LIU Jiaxuan. Tectonics of Cenozoic in Taiwan area[C]//In:Huang Q Y, Taiwan Tectonic. Geological Science of China, Taiwan, 2002:1
-48.]
[29] 李家彪,金翔龙,阮爱国,等.马尼拉海沟增生楔中段的挤入构造[J].科学通报,2004,49(10):1000-1008.
[LI Jiabiao, JIN Xianglong, RUAN Aaiguo, et al. Diapiric structure of accretionary middle piece in Manila Trench[J]. Chinese Science Bulletin, 2004, 49(10):1000-1008.]
[30] 李家彪,金翔龙,高金耀.南海东部海盆晚期扩张的构造地貌研究[J].中国科学D辑,2002,32(3):239-248.
[LI Jiabiao, JIN Xianglong, GAO Jinyao. The study of tectonic geomorphology of the late spreading in the eastern subbasin of South China Sea[J]. Science in China (Series D),2002,32(3):239-248.]
[31] 彭学超,吴庐山,崔兆国,等.南海东沙群岛以北海底沙波稳定性分析[J].热带海洋学报,2006,25(3):21-27.
[PENG Xuechao, WU Lushan, CUI Zhaoguo, et al. A stability analysis of seabed sand waves in waters north of Dongsha Islands of South China Sea[J].Journal of Tropical Oceanograghy, 2006, 25(3):21-27.]
[32] 吴建政,胡日军,朱龙海,等.南海北部海底沙波研究[J].中国海洋大学学报,2006,36(6):1019-1023.
[WU Jianzheng, HU Rijun, ZHU Longhai, et al. Study on the seafloor sandwaves in the Northern South China Sea[J]. Journal of Ocean University of China, 2006, 36(6):1019-1023.]
[33] 郭晓东,刑俊兵.海南省东方县戈枕金矿带构造控矿特征探讨[J].黄金地质,1997,3(2):42-46.
[GUO Xiaodong, XING Junbing. Discussion on feature of structure control of Gezhen gold belt, Dongfang, Hainan Province[J]. Gold Geology, 1997, 3(2):42-46.]
[34] Bird P. An updated digital model of plate boundaries[J]. Geochem. Geophys. Geosyst., 2003, 4(3):1027, doi:10.1029/2001GC000252.
[35] Moore J C, Brown K M, Horath F, et al. Plumbing accretionary prisms[C]//In:Tarney J, Pickering K T, Knipe R J, et al, eds. The Behavior and Influence of Fluids in Subduction Zones. London:The Royal Society, 1991:49-62.
[36] Moore J C, Vrolijk P. Fluids in accretionary prisms[J]. Reviews of Geophysics, 1992, 30:113-135.
-
计量
- 文章访问数: 1031
- PDF下载数: 3
- 施引文献: 0