-
摘要:
近年来,随着我国高炉炼铁技术的不断进步,对入炉矿品位的要求也不断提高。目前高铁低硅烧结技术的研究已经成为烧结技术发展的一大进步。应用高铁低硅烧结可进一步提高入炉品位,达到提铁、降硅、节焦及降低生铁成本的目的。此技术也对改善高炉冶炼条件和相应的技术经济指标具有非常重要的意义,并且响应国家号召,实现炼铁工艺的节能降耗。然而随着烧结矿中铁品位的提高,SiO2含量的降低,特别是当SiO2含量低于5%时,烧结过程中液相量的减少,粘结相的不足等问题势必会影响烧结矿的强度和产、质量。所以解决这些问题,成为高铁低硅烧结技术能够持续创新发展的不竭动力。本文主要是对高铁低硅烧结技术在国内外的发展现状所做的一个归纳总结,以及根据生产实际出现的问题提出相应的解决措施,同时对该技术未来发展趋于智能化所做出的一些设想。
Abstract:In recent years, with the continuous progress of China's blast furnace ironmaking technology, the requirements for the grade of ore into the furnace have also increased. At present, the research on high-speed and low-silicon sintering technology has become a great progress in the development of sintering technology. The application of high-speed and low-silicon sintering can further improve the quality of the furnace, and achieve the purposes of iron lifting, silicon reduction, coke reduction and pig iron cost reduction. This technology is also of great significance for improving blast furnace smelting conditions and corresponding technical and economic indicators, and the corresponding state has called for the energy saving and consumption reduction of the ironmaking process. However, with the increase of iron grade in sintered ore, the content of SiO2 decreases, especially when the content of SiO2 is less than 5%, the liquid phase volume decreases during the sintering process, and the problems of insufficient bonding phase are bound to affect the strength and sintered ore, production and quality. Therefore, solving these problems has become an inexhaustible motive force for the continuous innovation and development of high-speed low-silicon sintering technology. This article is mainly a summary of the current development status of high-speed low-silicon sintering technology at home and abroad, as well as corresponding solutions based on actual production problems. At the same time, some ideas for the future development of the technology are becoming intelligent.
-
Key words:
- High iron low silicon /
- Sinter /
- Energy saving /
- Intelligent
-
-
表 1 科维哈厂试生产烧结矿指标
Table 1. The sinter ore index of the trial production of the Keweiha plant
TFe/% FeO/% CaO% SiO2/% MgO/% AI2O3/% 碱度/倍 61.2 10.3 6.50 4.62 1.61 0.48 1.41 63.8 12.8 5.04 3.79 1.32 0.38 1.58 64.2 13.4 4.85 2.94 1.12 0.40 1.65 64.8 13.5 4.29 2.63 1.05 0.42 1.63 表 2 碱度对实验结果的影响
Table 2. Effect of alkalinity on test results
试样号 低温还原粉化/% 矿物组成(面积分数)/% RDI+ 6.3 RDI+ 3.15 RDI-0.5 Fe2O3 Fe3O4 铁酸钙 硅酸盐 孔洞 R2-2.1 15.78 50.37 6.94 1.43 53.52 33.84 10.45 0.49 R2-2.2 8.23 58.56 8.52 3.17 49.85 36.28 10.85 1.20 R2-2.3 24.61 67.80 5.65 0.78 40.75 46.42 10.18 1.81 R2-2.4 10.00 49.70 8.71 0.40 50.80 36.89 10.79 0.83 -
[1] 张俊杰. 炼铁工业节能减排技术[J]. 科技传播, 2013(5):112-114.
ZHANG J J. Energy Saving and Emission Reduction Technology of Ironmaking Industry[J]. Science and Technology Communication, 2013(5):112-114.
[2] 应自伟, 姜茂发, 许力贤, 等. 积极开发低硅烧结技术[J]. 烧结球团, 2002(06):8-11. doi: 10.3969/j.issn.1000-8764.2002.06.003
YING Z W, JIANG M F, XU L X, et al. Active development of low silicon sintering technology[J]. Sintering Pellets, 2002(06):8-11. doi: 10.3969/j.issn.1000-8764.2002.06.003
[3] 臧疆文, 王梅菊, 柯建新, 等. 小球团低硅烧结技术研究[J]. 新疆钢铁, 2006(4):4-6+10. doi: 10.3969/j.issn.1672-4224.2006.04.002
ZANG J W, WANG M J, KEe J X, et al. Study on sintering technology of small pellets with low silicon[J]. Xinjiang Iron and Steel, 2006(4):4-6+10. doi: 10.3969/j.issn.1672-4224.2006.04.002
[4] 许玉祥, 于原浩, 苏舜宇, 等. 徐钢高铁低硅烧结矿的生产[J]. 烧结球团, 2001, 26(6):41-42.
XU Y X, YU Y H, SU S Y, et al. Production of low silicon sinter for high speed iron in Xugang[J]. Sintering Pellets, 2001, 26(6):41-42.
[5] 贺淑珍, 边建刚, 李铁, 等. 太钢实施高铁低硅烧结初步探讨[J]. 钢铁研究, 2003, 31(6):11-14+54. doi: 10.3969/j.issn.1001-1447.2003.06.004
HE S Z, BIAN J G, LI T, et al. Preliminary discussion on the implementation of high speed iron and low silicon sintering in TISCO[J]. Iron and Steel Research, 2003, 31(6):11-14+54. doi: 10.3969/j.issn.1001-1447.2003.06.004
[6] 史国宪. 新兴铸管公司低硅烧结生产实践[J]. 烧结球团, 2005, 30(4):43-47. doi: 10.3969/j.issn.1000-8764.2005.04.013
SHI G X. Production practice of low silicon sintering in Xinxing casting pipe company[J]. Sintering Pellets, 2005, 30(4):43-47. doi: 10.3969/j.issn.1000-8764.2005.04.013
[7] 宋延琦, 李京社, 唐海燕, 等. 新兴铸管公司高铁低硅烧结实践[J]. 烧结球团, 2010, 35(1):48-52.
SONG Y Q, LI J S, TANG H Y, et al. Sintering practice of high iron and low silicon in Xinxing casting pipe Company[J]. Sinter Pellets, 2010, 35(1):48-52.
[8] 罗文平, 赵改革. 湘钢高铁低硅烧结技术的生产实践[J]. 烧结球团, 2017, 42(6):39-42+62.
LUO W P, ZHAO G G. Production practice of low silicon sintering technology for high speed iron at Xianggang[J]. Sintering Pellets, 2017, 42(6):39-42+62.
[9] 郑呈祥. 阳春新钢铁高铁低硅烧结的生产实践[J]. 南方金属, 2019(5): 23-25+46.
ZHENG C X. Production practice of Yangchun new iron and steel high-speed iron and low silicon sintering [J]. Nanfang Metals, 2019(5):23-25+46.
[10] Ishikawa Y, Sasaki S, Hegi Y, et al. production of low feo and low sio2 sinter at tobata no. 3 sinter plant, nippon-steel-corp-(improvement of sinter reducibility. 1[c]//transactions of the iron and steel institute of japan. 9-4 otemachi 1-chome chiyoda-ku, tokyo 100, japan: iron steel inst japan keidanren kaikan, 1982, 22(4): b83-b83.
[11] Obata H, Takahashi H, Nakamura M, et al. high productivity operation at chiba no. 4 sinter plant[j]. isij international, 1991, 31(5): 478-486.
[12] Kase M, Umezu Y, Tanaka N, et al. test operation results of sinter production with low slag content and high reducibility[c]//transactions of the iron and steel institute of japan. 9-4 otemachi 1-chome chiyoda-ku, tokyo 100, japan: iron steel inst japan keidanren kaikan, 1982, 22(2): b4-b4.
[13] 唐贤容, 张清岑. 烧结理论与工艺[M]. 长沙: 中南工业大学出版社.1992.TANG X R, ZHANG Q C. Sintering theory and technology [M]. Changsha: Central South University of Technology Press. 1992.
[14] Kase M, Umezu Y, Tanaka N, et al. test operation results of sinter production with low slag content and high reducibility[c]//transactions of the iron and steel institute of japan. 9-4 otemachi 1-chome chiyoda-ku, tokyo 100, japan: iron steel inst japan keidanren kaikan, 1982, 22(2): b4-b4.
[15] Fujii K, Hazama K, Hoshikuma Y, et al. Reduction of FeO contents in sinter under high bed operation[R]. Iron and Steel Society, Warrendale, PA (United States), 1996.
[16] Raipala K. High Iron Sintering at Koverhar[C]//Ironmaking Conference Proceedings, . 1992, 51: 61-66.
[17] Kurunov I F. Current State of Blast-Furnace Smelting in China, Japan, South Korea, Western Europe, and North and South America[J]. Metallurgist, 2015, 59(7-8):562-577. doi: 10.1007/s11015-015-0141-2
[18] 辜海芳. 近年我国进口铁矿石现状分析及2018年展望[J]. 冶金经济与管理, 2018(1):54-56.
GU H F. Analysis on the Status quo of imported iron ore in China in recent years and outlook for 2018[J]. Metallurgical Economics and Management, 2018(1):54-56.
[19] Jeon J W, Kim S W, Jung S M. Utilization of magnetite concentrate as an additive in adhering fines of quasi-particle and its effect on assimilation behavior[J]. ISIJ International, 2015, 55(3):513-520. doi: 10.2355/isijinternational.55.513
[20] 于强. 铁精矿粉高铁低硅烧结技术[J]. 山西冶金, 2006(2):41-42. doi: 10.3969/j.issn.1672-1152.2006.02.014
YU Q. Sintering technology of iron concentrate powder with high iron and low silicon[J]. Shanxi Metallurgy, 2006(2):41-42. doi: 10.3969/j.issn.1672-1152.2006.02.014
[21] 王荣成, 傅菊英. 高铁低硅烧结技术研究[J]. 钢铁, 2007(6):20-23.
WANG R C, FU J Y. Study on sintering technology of low silicon in high iron[J]. Iron and Steel, 2007(6):20-23.
[22] 何木光, 易凯, 张文德. 钒钛磁铁矿在高碱度下提铁降硅烧结性能研究[J]. 矿业工程, 2013(2):38-42. doi: 10.3969/j.issn.1671-8550.2013.02.014
HE M G, YI K, ZHANG W D. Study on the sintering performance of vanadium titanomagnetite with high alkalinity to increase iron and decrease silicon[J]. Mining Engineering, 2013(2):38-42. doi: 10.3969/j.issn.1671-8550.2013.02.014
[23] 贺淑珍, 高峰, 蔡湄夏. 高铁低硅烧结试验研究与实践[J]. 钢铁, 2004(11):12-15.
HE S Z, GAO F, CAI M X. Experimental study and practice of low silicon sintering for high speed railway[J]. Iron and Steel, 2004(11):12-15.
[24] 冯向鹏, 张玉柱, 李振国. 低硅条件下碱度对烧结矿强度的影响[J]. 烧结球团, 2004, 29(2):9-11. doi: 10.3969/j.issn.1000-8764.2004.02.003
FENG X P, ZHANG Y Z, LI Z G. Effect of alkalinity on sinter strength under low silicon condition[J]. Sintering Pellets, 2004, 29(2):9-11. doi: 10.3969/j.issn.1000-8764.2004.02.003
[25] 伍成波, 尹国亮, 程小利. 改善低硅烧结矿低温还原粉化性能的研究[J]. 钢铁, 2010, 45(4):16-19.
WU C B, YIN G L, CHENG X L. Study on the improvement of low temperature reduction pulverization performance of low silicon sinter[J]. Iron and Steel, 2010, 45(4):16-19.
[26] 伍成波, 程小利, 高阳. 碱度对南(京)钢低硅烧结矿低温还原粉化性能的影响[J]. 烧结球团, 2008, 033(006):14-18.
WU C B, CHEN X L, GAO Y, et al. Effect of alkalinity on low temperature reduction and deoxidizing properties of low silicon sinter from Nanjing Steel[J]. Sintering Pellets, 2008, 033(006):14-18.
[27] Higuchi K, Takamoto Y, Orimoto T, et al. Quality improvement of sintered ores in relation to blast furnace operation[J]. Shinnittetsu Giho, 2006, 384:33.
[28] Fan J, Qiu G, Jiangl T, et al. studies on alternative blast furnace burden structure[c]//3rd International Symposium on High-Temperature Metallurgical Processing. John Wiley & Sons, 2012: 59.
[29] 刘利明. 含钛铁精矿高铁低硅烧结技术的相关研究[J]. 中文信息, 2014(4):331.
LIU L M. Study on sintering technology of high iron and low silicon for titaniferous iron concentrate [J]. Chinese Information, 2014(4): 331.
[30] 胡鹏, 崔庆爽, 唐文博. 白马钒钛精矿厚料层烧结技术研究[J]. 烧结球团, 2019, 44(1):13-17.
HU P, CUI Q S, TANG W B. Research on sintering technology of thick layer of baima vanadium titanium concentrate[J]. Sintering Pellets, 2019, 44(1):13-17.
[31] 邓秋明, 徐东良. 兴澄特钢高铁低硅烧结的生产实践[J]. 烧结球团, 2005, 30(6):30-33. doi: 10.3969/j.issn.1000-8764.2005.06.009
DENG Q M, XU D L. Production practice of Xingcheng special steel high speed iron low silicon sintering[J]. Sintering Pellets, 2005, 30(6):30-33. doi: 10.3969/j.issn.1000-8764.2005.06.009
[32] 张克诚, 朱德庆, 李建, 等. 高铁低硅高料层烧结研究[J]. 烧结球团, 2003(2): 1-6.
ZHANG K C, ZHU D Q, LI J, et al. Study on sintering of high iron and low silicon and high material layer [J]. Sintering Pellets 2003(2): 1-6.
[33] 程峥明, 宁文欣, 潘文. 超厚料层均质烧结技术的研究与应用[J]. 烧结球团, 2019(4): 6-7.
CHENG Z M, NING W X, PAN W. Research and application of homogeneous sintering technology for ultra-thick coatings [J]. Sintering Pellets, 2019(4): 6-7.
[34] 邹凡球, 赵改革, 梁高铭. 湘钢360m2烧结机920mm厚料层烧结生产实践[J]. 烧结球团, 2019(3):6-9+17.
ZOU F Q, ZHAO G G, LIANG G M. Sintering Production Practice of 920mm Thick Material Layer in 360m2 Sintering Machine of Xianggang [J]. Sintering Pellets, 2019(3):6-9+17.
[35] 白瑞国, 李燕江, 吕庆, 等. 钒钛磁铁矿分流制粒厚料层烧结工艺研究[J]. 钢铁钒钛, 2015, 36(4):65-70.
BAI R G, LI Y J, LV Q, et al. Study on Sintering Technology of Vanadium-Titano-Magnetite Thick Layer with Split Granulation[J]. Iron and Steel Vanadium-Titanium, 2015, 36(4):65-70.
[36] 吕庆, 刘东辉, 邹雷雷, 等. 褐铁矿配比对钒钛磁铁烧结矿性能的影响[J]. 钢铁钒钛, 2014, 35(5):78-82.
LV Q, LIU D H, ZOU L L, et al. Effect of limonite ratio on properties of vanadium titanium magnet sinter[J]. Iron & Steel Vanadium and Titanium, 2014, 35(5):78-82.
[37] 袁晓丽. 烧结优化配矿综合技术系统的研究[D]. 长沙: 中南大学, 2007.
YUAN X L. Research on comprehensive technology system of optimized sintering ore blending [D]. Changsha: Central South University, 2007.
[38] 范晓慧, 陈许玲, 李骞, 等. 含钛铁精矿高铁低硅烧结技术[J]. 中南大学学报(自然科学版), 2006, 37(3):481-486. doi: 10.3969/j.issn.1672-7207.2006.03.013
FAN X H, CHEN X L, LI Q, et al. Sintering technology of high-iron and low-silicon iron concentrate containing titanium[J]. Journal of Central South University (Science and Technology), 2006, 37(3):481-486. doi: 10.3969/j.issn.1672-7207.2006.03.013
[39] 刘振林, 蔡漳平. 高铁低硅烧结矿配技术的试验研究[J]. 钢铁, 36(12): 1-5.
LIU Z L, CAI Z P. Experimental study on blending technology of high speed iron and low silicon sinter [J]. Iron and steel, 36 (12) : 1-5.
[40] 张大好. 基于线性规划和遗传算法的烧结配矿模型[J]. 现代冶金, 2013, 41(3):78-81.
ZHANG D H. Sintering ore blend model based on linear programming and genetic algorithm[J]. Modern Metallurgy, 2013, 41(3):78-81.
[41] 潘开灵, 程曦, 马云峰, 等. 炼铁配矿集成配比优化模型的应用研究[J]. 武汉科技大学学报, 2009, 32(6):583-586.
PAN K L, CHENG X, MA Y F, et al. Application Research of Integrated Proportioning Optimization Model for Iron Making and Ore Blending[J]. Journal of Wuhan University of Science and Technology, 2009, 32(6):583-586.
[42] 石凤丽, 郭卓团, 安胜利, 等. 蒙古矿及配矿后的烧结基础特性实验研究[J]. 内蒙古科技大学学报, 2012, 31(3):205-208. doi: 10.3969/j.issn.2095-2295.2012.03.001
SHI F L, GUO Z T, AN S L, et al. Study on the basic characteristics of sintering of Mongolian ore and its blend[J]. Journal of Inner Mongolia University of Science and Technology, 2012, 31(3):205-208. doi: 10.3969/j.issn.2095-2295.2012.03.001
[43] 王泽琦, 邬虎林, 陈革. 基于烧结基础特性的铁矿粉优化配矿研究[J]. 包钢科技, 2014, 40(4):23-26. doi: 10.3969/j.issn.1009-5438.2014.04.008
WANG Z Q, WU H L, CHEN G. Study on the optimization of ore blending of iron ore powder based on the basic characteristics of sintering[J]. Baotou Steel & Technology, 2014, 40(4):23-26. doi: 10.3969/j.issn.1009-5438.2014.04.008
[44] 范晓慧, 姜涛, 李光辉, 等. 炼铁原料的整体优化[C]. //2004年度全国烧结球团技术交流年会论文集. 2004: 4-9.
FAN X H, JIANG T, LI G H, et al. The overall optimization of iron-making raw materials [C]. // Proceedings of the Annual Meeting of National Sintering Pellet Technology Exchange in 2004.2004: 4-9.
-