金川硫化铜镍矿选矿工艺改造实践

丁良忠, 代宗, 贺志青. 金川硫化铜镍矿选矿工艺改造实践[J]. 矿产综合利用, 2022, (1): 168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023
引用本文: 丁良忠, 代宗, 贺志青. 金川硫化铜镍矿选矿工艺改造实践[J]. 矿产综合利用, 2022, (1): 168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023
Ding Liangzhong, Dai Zong, He Zhiqing. Technical Transformation and Productive Practice of Mineral Processing Flowsheet about Jinchuan Copper-Nickel Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023
Citation: Ding Liangzhong, Dai Zong, He Zhiqing. Technical Transformation and Productive Practice of Mineral Processing Flowsheet about Jinchuan Copper-Nickel Sulfide Ore[J]. Multipurpose Utilization of Mineral Resources, 2022, (1): 168-172. doi: 10.3969/j.issn.1000-6532.2022.01.023

金川硫化铜镍矿选矿工艺改造实践

详细信息
    作者简介: 丁良忠(1984-),男,工程师,主要研究方向为铜镍矿选矿
  • 中图分类号: TD952

Technical Transformation and Productive Practice of Mineral Processing Flowsheet about Jinchuan Copper-Nickel Sulfide Ore

  • 金川某矿区硫化铜镍矿中氧化镁含量高,主要以蛇纹石为主。生产实践表明,在现有的工艺流程下,精矿氧化镁含量波动大,超标严重,尾矿金属品位高、损失大,严重影响选矿厂的经济效益。为提高生产指标,在流程考察基础上对现有的工艺流程进行技术改造。改造后生产结果表明,高精氧化镁含量小于6.8%,镍回收率提高至87%以上,铜回收率提高至79%左右,精矿品质和金属回收率都有较大提高,给选矿厂带来良好的经济效益。

  • 加载中
  • 图 1  改造前工艺流程

    Figure 1. 

    图 2  改造后工艺流程

    Figure 2. 

    图 3  部分生产指标统计

    Figure 3. 

    表 1  低品位矿石多组分分析结果/%

    Table 1.  Multi component analysis results of low grade ore

    NiCuCoFeMnTiCrSiO2
    0.820.630.02511.290.0870.160.2234.51
    Al2O3CaOMgOCSNa2OP/
    5.235.6621.950.994.060.750.022/
    下载: 导出CSV

    表 2  低品位矿石镍化学物相

    Table 2.  Chemical phases of nickel in low grade ores

    物相氧化镍硫化镍其他镍总镍
    含量/%0.0010.790.0340.825
    占有率/%0.1295.764.12100.00
    下载: 导出CSV

    表 3  低品位矿石铜化学物相

    Table 3.  Chemical phases of copper in low grade ores

    物相氧化铜墨铜矿硫化铜其他铜总铜
    含量/%0.0010.0270.5930.0110.632
    占有率/%0.164.2793.831.74100.00
    下载: 导出CSV

    表 4  高品位矿石多组分分析结果/%

    Table 4.  Multi component analysis results of high grade ore

    NiCuCoFeMnTiCrSiO2
    1.471.260.02414.230.10.130.2629.72
    Al2O3CaOMgOCSNa2OP/
    3.002.8125.780.935.480.160.047/
    下载: 导出CSV

    表 5  高品位矿石镍化学物相

    Table 5.  Chemical phases of nickel in high grade ores

    物相氧化镍硫化镍其他镍总镍
    含量/%0.0031.460.0161.479
    占有率/%0.2098.721.08100.00
    下载: 导出CSV

    表 6  高品位矿石铜化学物相

    Table 6.  Chemical phases of copper in high grade ores

    物相氧化铜墨铜矿硫化铜其他铜总铜
    含量/%0.0030.171.090.0021.265
    占有率/%0.2413.4486.170.16100.00
    下载: 导出CSV

    表 7  工艺改造前生产指标

    Table 7.  Production index before process transformation

    时间高精低精尾矿回收率/%
    镍品位/%铜品位/%氧化镁/%镍品位/%铜品位/%镍品位/%铜品位/%
    二月7.115.787.643.922.330.210.3384.4372.12
    三月6.564.999.934.323.280.190.2885.775.3
    四月6.355.499.34.182.060.190.2586.1179.18
    五月7.666.097.75.212.170.20.3483.8368.55
    下载: 导出CSV

    表 8  一段二次精选作业分析结果

    Table 8.  Analysis results of secondary cleaning operation in Section one

    采样点第一次指标分析/%第二次指标分析/%第三次指标分析/%
    NiCuMgONiCuMgONiCuMgO
    一段二精19.918.324.979.437.653.8410.169.663.39
    一段二精28.235.258.599.956.464.8710.288.243.7
    一段二精37.592.779.369.535.156.4511.036.924.03
    一段二精46.071.7212.38.624.147.9411.236.194.27
    一段二精54.751.2913.425.92.299.919.212.836.52
    一段二精63.881.0613.544.321.8415.97.6427.3
    一段二精73.61.0614.192.291.320.225.411.349.4
    下载: 导出CSV

    表 9  二段精选作业分析结果

    Table 9.  Analysis results of second stage cleaning operation

    采样点第一次指标分析/%第二次指标分析/%第三次指标分析/%
    NiCuNiCuNiCu
    二段二精14.332.622.261.527.473.11
    二段二精23.111.982.041.394.351.76
    二段二精32.751.82.141.453.321.2
    二段二精42.951.851.711.252.450.97
    二段二精53.172.021.671.252.450.93
    二段三精12.721.684.82.56.122.46
    二段三精22.391.552.981.724.591.75
    二段三精31.81.342.21.453.761.4
    低精6.83.793.472.055.21.42
    下载: 导出CSV

    表 10  工艺改造后生产指标

    Table 10.  Production index after process transformation

    时间高精低精尾矿回收率/%
    镍品位/%铜品位/%氧化镁/%镍品位/%铜品位/%镍品位/%铜品位/%
    六月7.997.046.574.463.060.170.2888.2879.49
    七月7.186.496.755.432.430.180.2687.0178.38
    下载: 导出CSV
  • [1]

    殷仁述, 杨沿平, 谢林明, 等. 新能源汽车动力电池对有色金属资源需求预测[J]. 资源与产业, 2016, 18(5):85-91.

    YIN R S, YANG Y P, XIE L M, et al. New energy vehicle power battery demand forecast for non-ferrous metal resources[J]. Resources and Industry, 2016, 18(5):85-91.

    [2]

    邹邦坤, 丁楚雄, 陈春华. 锂离子电池三元正极材料的研究进展[J]. 中国科学:化学, 2014, 44(7):1104-1115.

    ZOU B K, DING C X, CHEN C H. Research progress of ternary cathode materials for lithium-ion batteries[J]. Science in China:Chemistry, 2014, 44(7):1104-1115.

    [3]

    谢杰, 胡春梅. 国内外硫化铜镍矿选矿现状及未来发展方向[J]. 矿产保护与利用, 2018(5):149-156.

    XIE J, HU C M. Current status and future development direction of copper-nickel sulfide ore beneficiation at home and abroad[J]. Conservation and Utilization of Mineral Resources, 2018(5):149-156.

    [4]

    刘钊, 张明, 刘洋, 等. φ5.5 m×8.5 m大型溢流球磨机衬板结构优化研究[J]. 矿山机械, 2020(8):71-73.

    LIU Z, ZHANG M, LIU Y, et al. Research on the optimization of the liner structure of the φ5.5m×8.5m large overflow ball mill[J]. Mining Machinery, 2020(8):71-73.

    [5]

    杨文彪, 张永梅. 粗精再磨工艺在某高铜镍比矿石选矿中的研究及应用[J]. 矿产综合利用, 2020(3):121-125. doi: 10.3969/j.issn.1000-6532.2020.03.020

    YANG W B, ZHANG Y M. Research and application of rough concentrate and regrinding technology in beneficiation of a high copper nickel ratio ore[J]. Multipurpose Utilization of Mineral Resources, 2020(3):121-125. doi: 10.3969/j.issn.1000-6532.2020.03.020

    [6]

    陈伟, 吴越. 六偏磷酸钠对低品位硫化铜镍矿浮选降镁的影响[J]. 矿冶, 2020, 29(2):34-37. doi: 10.3969/j.issn.1005-7854.2020.02.007

    CHEN W, WU Y. Effect of sodium hexametaphosphate on magnesium reduction by flotation of low-grade copper-nickel sulfide ore[J]. Mining and Metallurgy, 2020, 29(2):34-37. doi: 10.3969/j.issn.1005-7854.2020.02.007

    [7]

    刘广龙. 金川硫化镍铜贫矿石选矿工艺研究[J]. 铜业工程, 2011(4):1-11. doi: 10.3969/j.issn.1009-3842.2011.04.001

    LIU G L. Study on the beneficiation process of Jinchuan nickel-copper sulfide lean ore[J]. Copper Industry Engineering, 2011(4):1-11. doi: 10.3969/j.issn.1009-3842.2011.04.001

  • 加载中

(3)

(10)

计量
  • 文章访问数:  1106
  • PDF下载数:  121
  • 施引文献:  0
出版历程
收稿日期:  2021-01-01
刊出日期:  2022-02-25

目录