Application of Surface Modification and New Reagents in Low-Rank Coal Flotation under "Double Carbon Target"
-
摘要:
我国“富煤、贫油、少气”的能源结构特点决定了煤炭资源的主体能源地位,但其赋存条件较差。随着优质煤炭资源储量的减少,低阶煤的开发利用规模逐年扩大,在提供优质精煤的同时还逐步实现了对煤炭资源的绿色综合利用。低阶煤储量大、变质程度低、杂质成分复杂,实现低阶煤的分选,尤其是细粒低阶煤的高效分选对我国低阶煤的高效清洁利用至关重要。针对低阶煤亲水性强、孔隙度大、矸石成分和嵌布特征复杂的特性,系统讨论了通过表面改性、药剂合成和复配以及吸附特性研究等方面对低阶煤浮选的改善效果,展望了低阶煤浮选强化的未来发展方向,以期为我国煤炭资源的高效清洁利用和“双碳”战略目标的顺利实施提供借鉴和参考。
Abstract:The energy structure characteristics of "rich coal, poor oil and less gas" in China determine the main energy status of coal resources, but its occurrence conditions are poor. With the reduction of the reserves of high-quality coal resources, the development and utilization scale of low-grade coal is expanding year by year. While providing high-quality clean coal, it has gradually realized the green comprehensive utilization of coal resources. Low rank coal has large reserves, low metamorphic degree and complex impurity composition. It is very important for the efficient and clean utilization of low rank coal in China to realize the separation of low rank coal, especially the high-efficiency separation of fine-grained low rank coal. Aiming at the characteristics of strong hydrophilicity, large porosity and complex gangue composition and embedding characteristics of low-order coal, the improvement effect of low-order coal flotation through surface modification, reagent synthesis and compounding and adsorption characteristics was systematically discussed, and the future development direction of low-order coal flotation enhancement was predicted. It provides reference for the efficient and clean utilization of China’s coal resources and the smooth implementation of the strategic goal of “double carbon".
-
Key words:
- Low rank coal /
- double carbon /
- surface modification /
- flotation /
- adsorption
-
-
[1] 耿建纯. 低阶煤中含氧官能团对可浮性的影响规律研究[D]. 徐州: 中国矿业大学, 2017.
GENG J C. Study of the influence law of oxygen containing functional groups on the floatability of low rank coal[D]. Xuzhou: China University of Mining and Technology, 2017.
[2] 王涛, 王晓平, 张新. 煤中伴生矿产赋存状态及提取方法综述[J]. 矿产综合利用, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004
WANG T, WANG X P, ZHANG X. Summary of occurrence and extraction methods of associated minerals in coal[J]. Multipurpose Utilization of Mineral Resources, 2019(4):21-25. doi: 10.3969/j.issn.1000-6532.2019.04.004
[3] BENSLEY C N, NICOL S K. The effect of mechanical variables on the flotation of coarse coal[J]. Coal Perparation, 1985, 1(2):189-305. doi: 10.1080/07349348508945548
[4] 李明, 夏阳超, 王龙武, 等. 难浮煤表面性质及亲水性研究[J]. 矿业研究与开发, 2019, 39(6):109-113.
LI M, XIA Y C, WANG L W, et al. Study on surface characteristics and hydrophilicity of difficult floatation coal[J]. Mining research and development, 2019, 39(6):109-113.
[5] 宋帅, 樊玉萍, 马晓敏, 等. 煤泥水中煤与不同矿物相互作用的模拟研究[J]. 矿产综合利用, 2020(1):168-172. doi: 10.3969/j.issn.1000-6532.2020.01.034
SONG S, FAN Y P, MA X M, et al. Simulation study on interaction between coal and different minerals in coal slurry[J]. Multipurpose Utilization of Mineral Resources, 2020(1):168-172. doi: 10.3969/j.issn.1000-6532.2020.01.034
[6] 程万里, 邓政斌, 刘志红, 等. 煤泥浮选中矿物颗粒间相互作用力的研究进展[J]. 矿产综合利用, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
CHENG W L, DENG Z B, LIU Z H, et al. Research progress of interaction force between mineral particles in coal slurry flotation[J]. Multipurpose Utilization of Mineral Resources, 2020(3):48-55. doi: 10.3969/j.issn.1000-6532.2020.03.008
[7] 曹世明, 曹亦俊, 马子龙, 等. 焦煤中微细粒嵌布黄铁矿的浮选脱除研究[J]. 中国矿业大学学报, 2019, 48(6):1366-1374.
CAO S M, CAO Y J, MA Z L, et al. The flotation separation of fine pyrite locked in coking coal[J]. Journal of China University of Mining and Technology, 2019, 48(6):1366-1374.
[8] 邱鸿鑫, 陈浙锐, 陈颂, 等. 基于XRD与XRF分析矿物质对浮选尾煤图像灰度特征影响研究[J]. 矿产综合利用, 2020(2):114-117. doi: 10.3969/j.issn.1000-6532.2020.02.020
QIU H X, CHEN Z R, CHEN S, et al. Study on the influence of minerals on the gray characteristics of flotation coal image based on XRD and XRF[J]. Multipurpose Utilization of Mineral Resources, 2020(2):114-117. doi: 10.3969/j.issn.1000-6532.2020.02.020
[9] 聂琪, 戈保梁, 张晋禄, 等. 微波助磨技术处理某钼矿[J]. 矿产综合利用, 2019(1):39-43. doi: 10.3969/j.issn.1000-6532.2019.01.008
NIE Q, GE B L, ZHANG J L, et al. Microwave-assisted grinding of a molybdenum ore[J]. Multipurpose Utilization of Mineral Resources, 2019(1):39-43. doi: 10.3969/j.issn.1000-6532.2019.01.008
[10] 许宁, 陶秀祥, 张星. 微波辐照对低阶煤的表面改性作用[J]. 化学工程师, 2018, 32(5):68-70+74.
XU N, TAO X X, ZHANG X. Surface modification effect of microwave irradiation on low rank coal[J]. Chemical Engineer, 2018, 32(5):68-70+74.
[11] TANG L F, CHEN S J, WANG S W, et al. Exploration on the action mechanism of microwave with peroxyacetic acid in the process of coal desulfurization[J]. Fuel, 2018, 214:554-560. doi: 10.1016/j.fuel.2017.10.087
[12] 康文泽, 荀海鑫, 李明明. 超声波预处理对稀缺难浮煤浮选的作用[J]. 中国矿业大学学报, 2013, 42(4):625-630.
KANG W Z, XUN H X, LI M M. The effect of ultrasonic pretreatment on the flotation of scarce difficult-to -float coals[J]. Journal of China University of Mining and Technology, 2013, 42(4):625-630.
[13] 郑长龙, 茹毅. 超声预处理对低阶煤浮选的影响[J]. 煤炭工程, 2017, 49(5):125-127. doi: 10.11799/ce201705037
ZHENG C L, RU Y. Effect of ultrasonic pretreatment on low rank coal flotation[J]. Coal Engineering, 2017, 49(5):125-127. doi: 10.11799/ce201705037
[14] XU M D, XING Y W, GUI X H, et al. Effect of ultrasonic pretreatment on oxidized coal flotation[J]. Energy Fuels, 2017, 31(12):14367-14373. doi: 10.1021/acs.energyfuels.7b02115
[15] 李椿楠, 李国峰, 刘立伟, 等. 搅拌磨机的研究及应用现状[J]. 矿产综合利用, 2021(4):110-117. doi: 10.3969/j.issn.1000-6532.2021.04.017
LI C N, LI G F, LIU L W, et al. Research and application status of stirred mill[J]. Multipurpose Utilization of Mineral Resources, 2021(4):110-117. doi: 10.3969/j.issn.1000-6532.2021.04.017
[16] 许宁, 陶秀祥. 高剪切搅拌对煤泥颗粒表面性质的影响[J]. 煤炭技术, 2018, 37(12):325-327.
XU N, TAO X X. Influence of high shear agitation on surface properties of coal slime[J]. Coal Technology, 2018, 37(12):325-327.
[17] 刘杰, 刘炯天, 李延锋, 等. 细粒煤脱水的试验研究[J]. 选煤技术, 2008(2):6-9. doi: 10.3969/j.issn.1001-3571.2008.02.003
LIU J, LIU J T, LI Y F, et al. Experimental study on dewatering of fine coal[J]. Coal preparation technology, 2008(2):6-9. doi: 10.3969/j.issn.1001-3571.2008.02.003
[18] 徐建平, 陈跃华, 彭晓琴, 等. 煤中黄铁矿硫团聚脱硫的主要影响因素[J]. 煤炭科学技术, 2006(6):81-84. doi: 10.3969/j.issn.0253-2336.2006.06.027
XU J P, CHENG Y H, PENG X Q, et al. Main factors influenced to desulfurization of pyrite in coal[J]. Coal science and technology, 2006(6):81-84. doi: 10.3969/j.issn.0253-2336.2006.06.027
[19] 周子玉, 朱纯楚. 絮凝剂对煤泥浮选的影响试验研究[J]. 煤, 2021, 30(11):4-6+45. doi: 10.3969/j.issn.1005-2798.2021.11.002
ZHOU Z Y, ZHU C C. Experimental study on the effect of flocculants on coal slime flotation[J]. Coal, 2021, 30(11):4-6+45. doi: 10.3969/j.issn.1005-2798.2021.11.002
[20] 于淙权. 疏水改性聚丙烯酰胺的制备及选择性絮凝-浮选[J]. 矿产综合利用, 2021(1):199-203. doi: 10.3969/j.issn.1000-6532.2021.01.033
YU C Q. Preparation of hydrophobic modified polyacrylamide and study on selective flocculation-flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(1):199-203. doi: 10.3969/j.issn.1000-6532.2021.01.033
[21] 李路路. 低阶煤酸洗表面改性对浮选的影响及其作用机理研究[D]. 徐州: 中国矿业大学, 2019.
LI L L. Effectof surface modification of low rank coal pickling on flotation and its mechanis[D]. Xuzhou: China University of Mining and Technology, 2019.
[22] 朱一民. 2019年浮选药剂的进展[J]. 矿产综合利用, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001
ZHU Y M. The development of flotation reagent in 2019[J]. Multipurpose Utilization of Mineral Resources, 2020(5):1-17. doi: 10.3969/j.issn.1000-6532.2020.05.001
[23] 武乐鹏, 宋强, 张少飞, 等. 生物质柴油对朔州低阶煤的浮选研究[J]. 矿产综合利用, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
WU L P, SONG Q, ZHANG S F, et al. Study on flotation of Shuo zhou low-rank coal with bio-diesel[J]. Multipurpose Utilization of Mineral Resources, 2021(2):85-90. doi: 10.3969/j.issn.1000-6532.2021.02.016
[24] JIA R H, HARRIS G H, FUERSTENAU D W. An improved class of universal collectors for the flotation of oxidized and/or low-rank coal[J]. Int J Miner Process, 2000, 58(1-4):99-118. doi: 10.1016/S0301-7516(99)00024-1
[25] TIAN Q Z, ZHANG Y, LI G S, et al. Application of carboxylic acid in low-rank coal flotation[J]. International Journal of Coal Preparation and Utilization, 2019, 39(1):44-53. doi: 10.1080/19392699.2017.1297299
[26] XIA W C, YANG J G. Enhancement in flotation of oxidized coal by oxidized diesel oil and grinding pretreatment[J]. International Journal of Coal Preparation and Utilization, 2013, 33(6):257-265. doi: 10.1080/19392699.2013.816300
[27] 王市委, 陶秀祥, 陈松降, 等. 低阶煤的油泡浮选研究进展[J]. 矿产综合利用, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
WANG S W, TAO X X, CHEN S J, et al. Development of oily bubble flotation research for low-rank coal[J]. Multipurpose Utilization of Mineral Resources, 2020(4):48-58. doi: 10.3969/j.issn.1000-6532.2020.04.008
[28] VAMVUKA D, AGRIDIOTIS V. The effect of chemical reagents on lignite flotation[J]. Int J Miner Process, 2001, 61(3):209-224. doi: 10.1016/S0301-7516(00)00034-X
[29] XIA W C, NI C, XIE G Y. Effective flotation of lignite using a mixture of dodecane and 4-dodecylphenol (DDP) as a collector[J]. International Journal of Coal Preparation and Utilization, 2016, 36(5):262-271. doi: 10.1080/19392699.2015.1113956
[30] 张峰, 王怀法. 乳化捕收剂稳定性的探索及应用的研究[J]. 矿产综合利用, 2019(6):55-59. doi: 10.3969/j.issn.1000-6532.2019.06.012
ZHANG F, WANG H F. Research and application of stability of emulsifying collector[J]. Multipurpose Utilization of Mineral Resources, 2019(6):55-59. doi: 10.3969/j.issn.1000-6532.2019.06.012
[31] LASKOWSKI J S, YU Z M. Oil agglomeration and its effect on beneficiation and filtration of low-rank/oxidized coals[J]. Int J Miner Process, 2000, 58(1-4):237-252. doi: 10.1016/S0301-7516(99)90040-6
[32] XIE W, CAO G, REN X, et al. Effect of flotation promoter on the rate of coal slime flotation[J]. Journal of Mining Science, 2014, 50(3):601-607. doi: 10.1134/S1062739114030211
[33] 杨丹, 王海锋, 黄志刚, 等. 纳米煤制备及其改善煤泥浮选的机理研究[J]. 矿产综合利用, 2021(2):70-76. doi: 10.3969/j.issn.1000-6532.2021.02.014
YANG D, WANG H F, HUANG Z G, et al. Preparation of nano coal and its mechanism of improvement on coal flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(2):70-76. doi: 10.3969/j.issn.1000-6532.2021.02.014
[34] 王澜, 艾光华, 罗丽芳, 等. 纳米技术浮选技术研究进展[J]. 矿产综合利用, 2020(1):29-32. doi: 10.3969/j.issn.1000-6532.2020.01.005
WANG L, AI G H, LUO L F, et al. Development of nano flotation technology[J]. Multipurpose Utilization of Mineral Resources, 2020(1):29-32. doi: 10.3969/j.issn.1000-6532.2020.01.005
[35] 周绍奇, 伏少鹏, 卜祥宁, 等. 超声乳化煤油乳滴尺寸对泡沫性质及隐晶质石墨浮选的影响[J]. 矿产综合利用, 2020(2):182-187. doi: 10.3969/j.issn.1000-6532.2020.02.033
ZHOU S Q, FU S P, BO X N, et al. Effect of droplet size of ultrasonic emulsification kerosene emulsion on foam properties and the flotation of ccryptocrystalline graphite[J]. Multipurpose Utilization of Mineral Resources, 2020(2):182-187. doi: 10.3969/j.issn.1000-6532.2020.02.033
[36] 梁冰, 韩苗苗, 韩继康, 等. 一种新型浮选柱发泡器生成气泡特性研究[J]. 矿产综合利用, 2020(3):190-196. doi: 10.3969/j.issn.1000-6532.2020.03.033
LIANG B, HAN M M, HAN J K, et al. Bubble generation characteristics of a new type of flotation column[J]. Multipurpose Utilization of Mineral Resources, 2020(3):190-196. doi: 10.3969/j.issn.1000-6532.2020.03.033
[37] XIA W C, WU F, JAISWAL S, et al. Chemical and physical modification of low rank coal floatability by a compound collector[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2021, 610:125943. doi: 10.1016/j.colsurfa.2020.125943
[38] LI Y J, XIA W C, PENG Y L, et al. A novel coal tar-based collector for effective flotation cleaning of low rank coal[J]. Journal of Cleaner Production, 2020, 273:123172. doi: 10.1016/j.jclepro.2020.123172
-
计量
- 文章访问数: 1951
- PDF下载数: 124
- 施引文献: 0