-
摘要:
气泡作为浮选过程的载体,其特征对浮选效率有显著影响,气泡特征调控是强化浮选过程的有效手段,近年来,微泡浮选引起广泛的关注。本文从微泡生成、气泡特征调控及矿化机制等方面总结了微泡浮选的研究进展。介绍了射流发泡、微孔介质发泡、溶气发泡、超声发泡和电解发泡的发泡原理及应用。从表面活性剂、电解质和能量输入角度分析了微泡直径的调控机制,并基于气泡形态和上升速度方面探讨了微泡运动特性的调控机制;从颗粒与气泡的碰撞、粘附和脱附过程角度全面分析了微泡与颗粒的作用机理。最后对浮选微泡调控及其作用机制的未来发展趋势进行展望。
Abstract:As the carrier in the flotation process, bubble motion features have a significant impact on the flotation efficiency. The regulation of bubble characteristics is an effective method to enhance the flotation process. In recent years, microbubble flotation has received extensive attention. This paper reviews the advance of microbubble flotation from microbubble generation, microbubble features regulation and mineralization mechanism. The foaming principles and applications of jet foaming, microporous medium foaming, dissolved gas foaming, ultrasound foaming and electrolysis foaming are introduced. The regulation mechanism of microbubble size is analyzed from surfactants, electrolytes and energy input. The regulation mechanism of microbubble movement characteristics is discussed based on the bubble shape and rising velocity. Interaction mechanism of particles and microbubbles is fully analyzed from particle-bubble collision, attachment and detachment. Finally, the development of microbubble regulation and action mechanism is prospected.
-
Key words:
- Flotation /
- Microbubbles /
- Bubble size /
- Motion features /
- Mineralization
-
-
图 2 微孔介质发泡示意图[8]
Figure 2.
-
[1] Zongfu Dai, Daniel Fornasiero, John Ralston. Particle Bubble Collision Models: A Review[J]. Advances in Colloid and Interface Science, 2000, 85:231-256. doi: 10.1016/S0001-8686(99)00030-5
[2] 郭晟. 微泡生成机理及微泡发生器的优化设计研究[D]. 昆明: 昆明理工大学, 2006.
GUO S. Research on microbubble generation mechanism and optimized design of microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.
[3] 朱宏政, 王海艳, 王海楠, 等. 机械搅拌式浮选装置中气泡粒径分布规律[J]. 煤炭学报, 2018, 43(4):1140-1145.
ZHU H Z, WANG H Y, WANG H N, et al. Bubble size distribution in a mechanical flotation device[J]. Journal of China Coal Society, 2018, 43(4):1140-1145.
[4] 李小兵, 郭杰, 周晓华, 等. 浮选气泡制造技术进展[J]. 选煤技术, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011
LI X B, GUO J, ZHOU X H, et al. Development of floatation bubble manufacturing technology[J]. Coal Preparation Technology, 2003(6):60-62. doi: 10.3969/j.issn.1001-3571.2003.06.011
[5] 韩子伟. 组合微泡发生器发泡性能研究[D]. 昆明:昆明理工大学, 2016.
HAN Z W. Study on foaming performance of combined microbubble generator[D]. Kunming: Kunming University of Science and Technology, 2016.
[6] 李浙昆, 张宗华, 郭晟, 等. 微泡浮选射流气泡发生器的研究[J]. 矿业研究与开发, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021
LI Z K, ZHANG Z H, GUO S, et al. Research on jet bubble generator for microbubble floatation[J]. Mining Research and Development, 2007, 27(5):54-56. doi: 10.3969/j.issn.1005-2763.2007.05.021
[7] 邵延海. 浮选柱气泡发生器充气性能及应用研究[D]. 长沙: 中南大学, 2004.
SHAO Y H. Study on aeration performance and application of flotation column bubble generation[D]. Changsha: Central South University, 2004.
[8] 徐振华. 气浮工艺中金属微孔管制造微气泡的研究[D]. 成都: 四川大学, 2006.XU Z H.
Research on microbubbles generation by metal microporous tube in flotation technology[D]. Chengdu: Sichuan University, 2006.
[9] 程敏. 堇青石板式陶瓷膜微泡发生器的研究[D]. 贵阳:贵州大学, 2019 .
CHENG M. Study on cordierite plate ceramic membrane microbubble generator[D]. Guiyang: Guizhou University, 2019.
[10] 黄光耀, 陈雯, 冯其明, 等. 浮选柱内微孔发泡器发泡性能研究[J]. 金属矿山, 2010(10):129-133.
HUANG G Y, CHEN W, FENG Q M, et al. Foaming performance of microporous foaming generator[J]. Metal Mine, 2010(10):129-133.
[11] 高莹, 王晖, 鲁双, 等. 溶气浮选法处理含铬(Ⅵ)废水的研究[J]. 应用化工, 2009, 38(10):1469-1472.
GAO Y, WANG H, LU S, et al. Research on removal of Cr(Ⅵ) from waste-water by using dissolved-air flotation method[J]. Applied Chemical Industry, 2009, 38(10):1469-1472.
[12] 刘殿文, 尚旭, 方建军, 等. 微细粒氧化铜矿物浮选方法研究[J]. 中国矿业, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024
LIU D W, SHANG X, FANG J J, et al. Flotation method research on fine-particle copper oxide minerals[J]. China Mining Magazine, 2010, 19(1):79-81. doi: 10.3969/j.issn.1004-4051.2010.01.024
[13] Matis K A, 刘明鉴. 溶气浮选和电解浮选[J]. 国外金属矿选矿, 1990:1-15.
MATIS K A, LIU M J. Dissolved air flotation and electrolytic flotation[J]. Metallic Ore Dressing Abroad, 1990:1-15.
[14] Kentish S, Ashokkumar M. The physical and chemical effects of ultrasound. in ultrasound technologies for food and bioprocessing, Feng, H, Barbosa-Canovas G, Weiss J. Eds. Springer New York: New York, NY, 2011; pp 1-12.
[15] 欧乐明, 耿少沛, 冯其明. 超声波发泡及对气含率的影响[J]. 有色金属科学与工程, 2015, 6(5):80-84.
OU L M, GENG S O, FENG Q M. Ultrasonic foaming and its effect on gas hold-up[J]. Nonferrous Metals Science and Engineering, 2015, 6(5):80-84.
[16] Jiménez C, Talavera B, Sáez C, et al. Study of the production of hydrogen bubbles at low current densities for electro-flotation processes[J]. Journal of Chemical Technology and Biotechnology, 2010, 85:1368-1373. doi: 10.1002/jctb.2442
[17] Glembotsky V A, Mamakov A A, Romanov A M, et al. Selective separation of fine mineral slimes using method of electric flotation[J]. Proceedings of 11th International Mineral Processing Congress Cagliari, 1975, 561–582.
[18] 陈金銮, 万晶, 施汉昌. 电解浮选反应器设计研究[C]. 2006新工艺新设备在自来水厂, 污水处理厂, 回用水厂, 垃圾处理场的应用研讨会论文集, 2006.
CHEN J L, WAN J, SHI H C. Research on the design of electrolytic flotation reactor[C]. 2006 Proceedings of the Seminar on the Application of New Technology and New Equipment in Waterworks, Sewage Treatment Plants, Recycled Water Plants and Waste Disposal Plants, 2006.
[19] 朱超英, 易峦, 程建国, 等. 新型电解微泡浮选柱的研制与试验研究[J]. 矿冶工程, 2012, 32(8):46-48.
ZHU C Y, YI L, CHENG J G, et al. Development and experimental study of a new electrolytic microbubble flotation column[J]. Mining and Metallurgical Engineering, 2012, 32(8):46-48.
[20] 薛伟江. 环保型直通孔结构多孔陶瓷的制备与性能[D]. 天津: 天津大学, 2009.
XUAN W J. Preparation and properties of porous ceramics with features of eco- friendly and unidirectional aligned pores[D]. Tianjin: Tianjin University, 2009.
[21] Tan Y H, Finch J A. Frother Structure-property Relationship: Effect of Alkyl Chain Length in Alcohols and Polyglycol Ethers on Bubble Rise Velocity[J]. Minerals. Engineering, 2016, 95:14-20. doi: 10.1016/j.mineng.2016.05.012
[22] Zhu H, Zhu J, Alejandro L V, et al. Effect of Reagent Blend on Characteristics and Dispersion of Bubbles in A Flotation Column[J]. Journal of China Coal Society, 2019, 44:1586-1592.
[23] Craig V S J, Ninham B W, Pashley R M. Effect of Electrolytes on Bubble Coalescence[J]. Nature, 1993, 364:317-319. doi: 10.1038/364317a0
[24] Lessard R R, Zieminski S A. Bubble Coalescence and Gas Transfer in Aqueous Electrolytic Solutions[J]. Industrial and Engineering Chemistry Fundamentals, 1971, 10(2):260-269. doi: 10.1021/i160038a012
[25] 张雪勤, 蔡怡, 杨亚江. 两性离子/阴离子表面活性剂复配体系协同作用的研究[J]. 胶体与聚合物, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001
ZHANG X Q, CAI Y, YANG Y J. Study of cooperative effect of mixed system of zwitterionic and anionic surfactants[J]. Chinese Journal of Colloid and Polymer, 2002, 20(3):1-5. doi: 10.3969/j.issn.1009-1815.2002.03.001
[26] Gorain B K, Franzidis J P, Manlapig E V. Studies on Impeller Type, Impeller Speed and Air Flow Rate in An Industrial Scale Flotation Cell—Part 1: Effect on Bubble Size Distribution[J]. Minerals. Engineering, 1995, 8:615-635. doi: 10.1016/0892-6875(95)00025-L
[27] Zhu H, Valdivieso L A, Zhu J, et al. A Study of Bubble Size Evolution in Jameson Flotation Cell[J]. Chemical Engineering Research and Design, 2018, 137:461-466. doi: 10.1016/j.cherd.2018.08.005
[28] 惠恒雷. 射流发泡制造微气泡技术试验研究[D]. 青岛:中国石油大学(华东), 2011.
HUI H L. Experimental study on technology of micro-bubble jet foam[D]. Qingdao: China University of Petroleum (Huadong), 2011.
[29] 贾彦. 起泡剂作用下单气泡运动特性实验研究[D]. 徐州: 中国矿业大学, 2016.
JIA Y. Experimental study of surfactant effect on motion characteristic of single bubble[J]. Xuzhou: China University of Mining and Technology, 2016.
[30] 王军超, 李国胜, 韩加展, 等. 起泡剂对溶液中气泡形状和速度的影响研究[J]. 煤炭工程, 2016, 48(9):142-145.
WANG J C, LI G S, HAN J Z, et al. Study on bubble shape and velocity in different frother solutions coal[J]. Engineering, 2016, 48(9):142-145.
[31] Wu M, Gharib M. Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water[J]. Physics of Fluids, 2002, 14(7):49-52. doi: 10.1063/1.1485767
[32] David Reay, Ratcliff G A. Removal of Fine Particles from Water by Dispersed Air Flotation: Effects of Bubble Size and Particle Size on Collection Efficiency[J]. The Canadian Journal of Chemical Engineering, 2009, 51(2):178-185.
[33] Yoon R H, Luttrell G H. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5(1):101-122.
[34] Flint L R, Howarth W J. The Collision Efficiency of Small Particles with Spherical Air Bubbles[J]. Chemical Engineering Science, 1971, 26(8):1155-1168. doi: 10.1016/0009-2509(71)87002-1
[35] 张世杰. 煤泥浮选过程中颗粒与气泡碰撞, 吸附规律研究[D]. 北京: 中国矿业大学(北京), 2015.
ZHANG S J. Study on collision and attachment behavior between particle and bubble in coal slime flotation[D]. Beijing: China University of Mining and Technology (Beijing), 2015.
[36] Hassanzadeha A, Hassasb B V, Kouachic S, et al. Effect of Bubble Size and Velocity on Collision Efficiency in Chalcopyrite Flotation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498:258-267.
[37] Lee J E, Lee J K. Effect of microbubbles and particle size on the particle collection in the column flotation[J]. Korean Journal of Chemical Engineering, 2002, 19(4):703-710. doi: 10.1007/BF02699321
[38] Yoon R, Luttrell G. The Effect of Bubble Size on Fine Particle Flotation[J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5:101-102. doi: 10.1080/08827508908952646
[39] 罗德里古斯R T, 李长根, 崔洪山. 溶解气体浮选法(DAF)在矿业和矿物加工中的潜在应用[J]. 国外金属矿选矿, 2007:4-10.
RODRIGUES R T, LI C G, CUI H S. Potential application of dissolved gas flotation (DAF) in mining and mineral processing[J]. Metallic Ore Dressing Abroad, 2007:4-10.
[40] Finch, Dobby. Column flotation[M]. Pregamon Press, 1991.
[41] 许光前. 基于静态矿浆/泡沫界面区的气泡-颗粒脱附机理研究[D]. 徐州: 中国矿业大学, 2018.
XU G Q. Mechanism of bubble-particle detachment at the static pulp/froth interface[D]. Xuzhou: China University of Mining and Technology, 2018.
[42] Bournival G, de Oliveira e Souza L, Ata S, et al. Effect of Alcohol Frothing Agents on the Coalescence of Bubbles Coated with Hydrophobized Silica Particles[J]. Chemical Engineering Science, Elsevier, 2015, 131:1-11. doi: 10.1016/j.ces.2015.03.036
-