-
摘要:
本文以铁尾矿为研究对象,以草酸和EDTA-2Na作为浸提剂对铁尾矿中的Pb、Zn、Cu、Cr和Ni进行震荡浸提实验,研究不同浸提液浓度、液固比和震荡时间对重金属去除效果的影响,并对浸提前后重金属形态的变化进行分析,探讨了浸出含量与重金属形态的相关性。结果表明,Pb、Cu、Cr在草酸浓度分别为250、100、200 mmol/L时去除率达到最高,分别为19.9%、43.9%、4.2%;Zn和Ni在EDTA-2Na浓度分别为100、200 mmol/L时去除效果最好,去除率分别为33.2%和39.4%。草酸浸提过程中,Cu和Pb的去除率随震荡时间的增加逐渐提高,Zn、Ni和Cr的去除率在120 min后基本趋于稳定。EDTA-2Na对重金属的去除率随震荡时间的延长变化不大,当震荡时间为60 min时基本趋于稳定。当液固比为30∶1时,草酸和EDTA-2Na对重金属的去除效果相对较好。对草酸浸提前后重金属的形态进行分析,发现浸提不仅能够有效去除重金属的易迁移形态,还能使重金属形态发生迁移转化。相关性分析发现重金属浸出含量与可交换态和碳酸盐结合态的相关系数分别为0.930*和0.996**。浸提后铁尾矿中重金属的可交换态和碳酸盐结合态比例降低,残渣态、铁锰氧化物结合态和有机结合态比例增加,提高了铁尾矿在环境中的稳定性,降低了其污染环境的风险,为铁尾矿的无害化提供了新的思路和理论依据。
Abstract:In this paper, oxalic acid and EDTA-2Na were used as leaching agents to perform shock leaching tests on Pb, Zn, Cu, Cr and Ni in iron tailings. The effect of different leaching solution concentrations, liquid-solid ratios and shaking times on the removal effect of heavy metals were studied. The changes of heavy metal morphology after leaching were analyzed, and the correlation between leaching content and heavy metal morphology was discussed. The results showed that the removal rates of Pb, Cu, and Cr reached the highest when the oxalic acid concentration was 250, 100, and 200 mmol/L, respectively, and the removal rates were 19.9%, 43.9%, and 4.2%, respectively. The removal effect of Zn and Ni was best when the concentration of EDTA-2Na was 100 and 200 mmol/L, respectively, and the removal rates were 33.2% and 39.4%, respectively. During the oxalic acid leaching process, the removal rates of Cu and Pb gradually increased with the increase of shaking time, and the removal rates of Zn, Ni and Cr tended to be stable after 120 min. EDTA-2Na had little effect on the removal rate of heavy metals with the extension of the shaking time, and it basically stabilized when the shaking time was 60 min. When the liquid-solid ratio was 30:1, the removal effect of heavy metals was relatively good. The morphology of heavy metals after oxalic acid leaching was analyzed, and it was found that the leaching can not only effectively remove the easily migrated forms of heavy metals, but also caused the migration and transformation between heavy metal forms. Correlation analysis found that the correlation coefficients of heavy metal leaching content with exchangeable state and carbonate binding state were 0.930* and 0.996**, respectively. After leaching, the ratios of the exchangeable state and the carbonate-bound state of heavy metals in the iron tailings decreased, and the proportion of the residue state, the iron-manganese oxide-bound state and the organically bound state increased. This improved the stability of iron tailings in the environment, reduced the risk of iron tailings polluting the environment, and provided new ideas and theoretical basis for the harmless iron tailings.
-
Key words:
- Iron tailings /
- Leaching /
- Heavy metal /
- Oxalic acid /
- EDTA-2Na
-
-
表 1 铁尾矿中重金属的总含量/(g·t−1)
Table 1. Total amount of heavy metals in iron ore tailings
Pb Zn Cu Cr Ni 1655.0 2006.3 2527.9 422.7 37.8 表 2 草酸浸提前后铁尾矿中重金属形态含量对比/(g·t−1)
Table 2. Comparison of various heavy metal forms in iron tailings before and after leaching
重金属元素 浸提
前后可交换态 碳酸盐结合态 铁锰氧化物结合态 有机结合态 残渣态 总量 Pb 前 74.9 59.4 80.1 60.1 1380.5 1655.0 后 15.8 11.1 67.9 59.0 1187.1 1340.9 Zn 前 576.0 133.6 81.2 56.1 1159.4 2006.3 后 92.1 105.0 86.2 54.2 1138.8 1476.3 Cu 前 729.8 277.8 68.6 175.0 1276.7 2527.9 后 56.3 73.1 14.0 155.7 1127.3 1426.5 Cr 前 12.1 11.2 8.0 78.2 313.2 422.7 后 4.6 4.0 7.9 82.1 304.8 403.4 Ni 前 9.3 2.8 3.3 2.6 19.8 37.8 后 2.3 1.0 3.1 7.1 14.9 28.4 表 3 铁尾矿重金属形态与浸提含量相关性分析结果
Table 3. Correlation analysis results of morphology and leaching effect of heavy metals in iron tailings
可交
换态碳酸盐
结合态铁锰氧化物
结合态有机
结合态残渣态 Pearson
相关性0.930* 0.996** 0.685 0.846 0.733 显著性
(双侧)0.022 0.000 0.202 0.071 0.159 N 5 5 5 5 5 注:*在0.05级别(双侧)相关性显著;**在0.01级别(双侧)相关性显著。 -
[1] YANG C, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014(70):36-42.
[2] 汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件[J]. 矿产综合利用, 2019, 5(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026
WANG Y L, LUO S H, JIANG M F, et al. Process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019, 5(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026
[3] 杨进忠, 毛益林, 陈晓青, 等. 某尾矿资源化处置与综合利用研究[J]. 矿产综合利用, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025
YANG J Z, MAO Y L, CHEN X Q, et al. Study on resource disposal and comprehensive utilization of tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025
[4] 王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003
WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003
[5] Tepanosyan G, Sahakyan L, Belyaeva O, et al. Continuous impact of mining activities on soil heavy metals levels and human health[J]. Science of the Total Environment, 2018, 639:900-909. doi: 10.1016/j.scitotenv.2018.05.211
[6] 吴玉元, 何东升, 胡洋, 等. 某铜铁矿尾矿工艺矿物学研究[J]. 矿产综合利用, 2019(2):75-78. doi: 10.3969/j.issn.1000-6532.2019.02.015
WU Y Y, HE D S, HU Y, et al. Mineralogical study on a copper-iron ore tailings process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):75-78. doi: 10.3969/j.issn.1000-6532.2019.02.015
[7] 汪金花, 曹兰杰, 白洋, 等. 铁尾矿粒径和湿度因子对高光谱特征参量影响[J]. 矿产综合利用, 2019(2):128-133. doi: 10.3969/j.issn.1000-6532.2019.02.027
WANG J H, CAO L J, BAI Y, et al. Influence of iron tailings' particle size and humidity factor on hyperspectral characteristic parameters[J]. Multipurpose Utilization of Mineral Resources, 2019(2):128-133. doi: 10.3969/j.issn.1000-6532.2019.02.027
[8] Cameselle C, Gouveia S. Phytoremediation of mixed contaminated soil enhanced with electric current[J]. Journal of Hazardous Materials, 2019, 361:95-102. doi: 10.1016/j.jhazmat.2018.08.062
[9] Zhai X, Li Z, Huang B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Science of the Total Environment, 2018, 635:92-99. doi: 10.1016/j.scitotenv.2018.04.119
[10] Yan D Y, LO I M. Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction[J]. Journal of Hazardous Materials, 2012, 199-200:51-7. doi: 10.1016/j.jhazmat.2011.10.054
[11] Rosestolato D, Bagatin R, Ferro S. Electrokinetic remediation of soils polluted by heavy metals (mercury in particular)[J]. Chemical Engineering Journal, 2015, 264:16-23. doi: 10.1016/j.cej.2014.11.074
[12] Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31. doi: 10.1016/j.jhazmat.2007.10.043
[13] 郭军康, 李艳萍, 李永涛, 等. 采用草酸和EDTA去除农田土壤中砷和镉污染物[J]. 环境工程, 2019, 37(5):70-75.
GUO J K, LI Y P, LI Y T, et al. Treatment of arsenic and cadmium in contaminated farmland soil with oxalic acid and EDTA[J]. Environmental Engineering, 2019, 37(5):70-75.
[14] Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Aanlytical Chemistry, 1979, 51(7):841-851.
[15] 薛清华, 黄凤莲, 梁芳, 等. EDTA/DTPA与柠檬酸混合连续淋洗土壤中镉铅及其对土壤肥力的影响[J]. 矿冶工程, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020
XUE Q H, HUANG F L, LIANG F, et al. Continuous soil washing with edta/dtpa combined with citric acid for removing cd and pb and its impact on soil fertility[J]. Mining and Metallurgical Engineering, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020
[16] 孙涛, 陆扣萍, 王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1):140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
SUN T, LU K P, WANG H L. Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University, 2015, 32(1):140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021
[17] 许超, 夏北城, 林颖. EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响[J]. 水土保持学报, 2009, 23(4):146-151.
XU C, XIA B C, LIN Y. Kinetics of heavy metals desorption by edta and citric in contaminated soil and their redistribution of fractions[J]. Journal of Soil and Water Conservation, 2009, 23(4):146-151.
[18] 刘仕翔, 胡三荣, 罗泽娇. EDTA和CA复配淋洗剂对重金属复合污染土壤的淋洗条件研究[J]. 安全与环境工程, 2017, 24(3):77-83.
LIU S X, HU S R, LUO Z J. Study on compounding edta and ca leaching heavy metals contaminated soil[J]. Safety and Environmental Engineering, 2017, 24(3):77-83.
[19] 陈璐, 文方, 程艳, 等. 铅锌尾矿中重金属形态分布与毒性浸出特征研究[J]. 干旱区资源与环境, 2017, 31(3):89-94.
CHEN L, WEN F, CHENG Y, et al. Characteristics of speciation distribution and toxicity leaching of heavy metals in Pb-Zn tailings[J]. Journal of Arid Land Resources and Environment, 2017, 31(3):89-94.
-