浸提法去除铁尾矿中重金属Pb、Zn、Cu、Cr和Ni的研究

刘雨昕, 路星雯, 宁寻安, 王逸, 钟仁. 浸提法去除铁尾矿中重金属Pb、Zn、Cu、Cr和Ni的研究[J]. 矿产综合利用, 2022, 43(4): 33-40. doi: 10.3969/j.issn.1000-6532.2022.04.007
引用本文: 刘雨昕, 路星雯, 宁寻安, 王逸, 钟仁. 浸提法去除铁尾矿中重金属Pb、Zn、Cu、Cr和Ni的研究[J]. 矿产综合利用, 2022, 43(4): 33-40. doi: 10.3969/j.issn.1000-6532.2022.04.007
Liu Yuxin, Lu Xingwen, Ning Xunan, Wang Yi, Zhong Ren. Removal of Pb, Zn, Cu, Cr and Ni in Iron Tailings by Leaching[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 33-40. doi: 10.3969/j.issn.1000-6532.2022.04.007
Citation: Liu Yuxin, Lu Xingwen, Ning Xunan, Wang Yi, Zhong Ren. Removal of Pb, Zn, Cu, Cr and Ni in Iron Tailings by Leaching[J]. Multipurpose Utilization of Mineral Resources, 2022, 43(4): 33-40. doi: 10.3969/j.issn.1000-6532.2022.04.007

浸提法去除铁尾矿中重金属Pb、Zn、Cu、Cr和Ni的研究

  • 基金项目: 2017年土壤中央专项资金-大宝山尾矿无害化处理及综合利用前期研究项目(No.18HK0108);常压碳热还原法从废阴极射线管(CRT)中回收(502180058)
详细信息
    作者简介: 刘雨昕(1994-),女,在读研究生,研究方向为固体废物处理与资源化利用
    通讯作者: 路星雯(1984-),女,博士,讲师,研究方向为固体废物资源化利用过程中重金属的迁移转化及稳定化机制。
  • 中图分类号: TD952

Removal of Pb, Zn, Cu, Cr and Ni in Iron Tailings by Leaching

More Information
  • 本文以铁尾矿为研究对象,以草酸和EDTA-2Na作为浸提剂对铁尾矿中的Pb、Zn、Cu、Cr和Ni进行震荡浸提实验,研究不同浸提液浓度、液固比和震荡时间对重金属去除效果的影响,并对浸提前后重金属形态的变化进行分析,探讨了浸出含量与重金属形态的相关性。结果表明,Pb、Cu、Cr在草酸浓度分别为250、100、200 mmol/L时去除率达到最高,分别为19.9%、43.9%、4.2%;Zn和Ni在EDTA-2Na浓度分别为100、200 mmol/L时去除效果最好,去除率分别为33.2%和39.4%。草酸浸提过程中,Cu和Pb的去除率随震荡时间的增加逐渐提高,Zn、Ni和Cr的去除率在120 min后基本趋于稳定。EDTA-2Na对重金属的去除率随震荡时间的延长变化不大,当震荡时间为60 min时基本趋于稳定。当液固比为30∶1时,草酸和EDTA-2Na对重金属的去除效果相对较好。对草酸浸提前后重金属的形态进行分析,发现浸提不仅能够有效去除重金属的易迁移形态,还能使重金属形态发生迁移转化。相关性分析发现重金属浸出含量与可交换态和碳酸盐结合态的相关系数分别为0.930*和0.996**。浸提后铁尾矿中重金属的可交换态和碳酸盐结合态比例降低,残渣态、铁锰氧化物结合态和有机结合态比例增加,提高了铁尾矿在环境中的稳定性,降低了其污染环境的风险,为铁尾矿的无害化提供了新的思路和理论依据。

  • 加载中
  • 图 1  浓度对重金属去除效果的影响

    Figure 1. 

    图 2  不同液固比对重金属去除率的影响

    Figure 2. 

    图 3  震荡时间对重金属去除效果的影响

    Figure 3. 

    图 4  铁尾矿中重金属的形态分布

    Figure 4. 

    表 1  铁尾矿中重金属的总含量/(g·t−1

    Table 1.  Total amount of heavy metals in iron ore tailings

    PbZnCuCrNi
    1655.02006.32527.9422.737.8
    下载: 导出CSV

    表 2  草酸浸提前后铁尾矿中重金属形态含量对比/(g·t−1

    Table 2.  Comparison of various heavy metal forms in iron tailings before and after leaching

    重金属元素浸提
    前后
    可交换态碳酸盐结合态铁锰氧化物结合态有机结合态残渣态总量
    Pb74.959.480.160.11380.51655.0
    15.811.167.959.01187.11340.9
    Zn576.0133.681.256.11159.42006.3
    92.1105.086.254.21138.81476.3
    Cu729.8277.868.6175.01276.72527.9
    56.373.114.0155.71127.31426.5
    Cr12.111.28.078.2313.2422.7
    4.64.07.982.1304.8403.4
    Ni9.32.83.32.619.837.8
    2.31.03.17.114.928.4
    下载: 导出CSV

    表 3  铁尾矿重金属形态与浸提含量相关性分析结果

    Table 3.  Correlation analysis results of morphology and leaching effect of heavy metals in iron tailings

    可交
    换态
    碳酸盐
    结合态
    铁锰氧化物
    结合态
    有机
    结合态
    残渣态
    Pearson
    相关性
    0.930*0.996**0.6850.8460.733
    显著性
    (双侧)
    0.0220.0000.2020.0710.159
    N55555
    注:*在0.05级别(双侧)相关性显著;**在0.01级别(双侧)相关性显著。
    下载: 导出CSV
  • [1]

    YANG C, CUI C, QIN J, et al. Characteristics of the fired bricks with low-silicon iron tailings[J]. Construction and Building Materials, 2014(70):36-42.

    [2]

    汪应玲, 罗绍华, 姜茂发, 等. 铁尾矿制备地质聚合物工艺条件[J]. 矿产综合利用, 2019, 5(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    WANG Y L, LUO S H, JIANG M F, et al. Process conditions for geopolymer from iron tailings[J]. Multipurpose Utilization of Mineral Resources, 2019, 5(5):121-126. doi: 10.3969/j.issn.1000-6532.2019.05.026

    [3]

    杨进忠, 毛益林, 陈晓青, 等. 某尾矿资源化处置与综合利用研究[J]. 矿产综合利用, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025

    YANG J Z, MAO Y L, CHEN X Q, et al. Study on resource disposal and comprehensive utilization of tailings[J]. Multipurpose Utilization of Mineral Resources, 2019(6):117-122+156. doi: 10.3969/j.issn.1000-6532.2019.06.025

    [4]

    王圳, 张均, 陈芳, 等. 贵州省磷矿固体废弃物治理现状与建议[J]. 矿产综合利用, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003

    WANG Z, ZHANG J, CHEN F, et al. Present situation and suggestion of management of phosphate rock solid waste[J]. Multipurpose Utilization of Mineral Resources, 2019(1):11-15. doi: 10.3969/j.issn.1000-6532.2019.01.003

    [5]

    Tepanosyan G, Sahakyan L, Belyaeva O, et al. Continuous impact of mining activities on soil heavy metals levels and human health[J]. Science of the Total Environment, 2018, 639:900-909. doi: 10.1016/j.scitotenv.2018.05.211

    [6]

    吴玉元, 何东升, 胡洋, 等. 某铜铁矿尾矿工艺矿物学研究[J]. 矿产综合利用, 2019(2):75-78. doi: 10.3969/j.issn.1000-6532.2019.02.015

    WU Y Y, HE D S, HU Y, et al. Mineralogical study on a copper-iron ore tailings process[J]. Multipurpose Utilization of Mineral Resources, 2019(2):75-78. doi: 10.3969/j.issn.1000-6532.2019.02.015

    [7]

    汪金花, 曹兰杰, 白洋, 等. 铁尾矿粒径和湿度因子对高光谱特征参量影响[J]. 矿产综合利用, 2019(2):128-133. doi: 10.3969/j.issn.1000-6532.2019.02.027

    WANG J H, CAO L J, BAI Y, et al. Influence of iron tailings' particle size and humidity factor on hyperspectral characteristic parameters[J]. Multipurpose Utilization of Mineral Resources, 2019(2):128-133. doi: 10.3969/j.issn.1000-6532.2019.02.027

    [8]

    Cameselle C, Gouveia S. Phytoremediation of mixed contaminated soil enhanced with electric current[J]. Journal of Hazardous Materials, 2019, 361:95-102. doi: 10.1016/j.jhazmat.2018.08.062

    [9]

    Zhai X, Li Z, Huang B, et al. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization[J]. Science of the Total Environment, 2018, 635:92-99. doi: 10.1016/j.scitotenv.2018.04.119

    [10]

    Yan D Y, LO I M. Pyrophosphate coupling with chelant-enhanced soil flushing of field contaminated soils for heavy metal extraction[J]. Journal of Hazardous Materials, 2012, 199-200:51-7. doi: 10.1016/j.jhazmat.2011.10.054

    [11]

    Rosestolato D, Bagatin R, Ferro S. Electrokinetic remediation of soils polluted by heavy metals (mercury in particular)[J]. Chemical Engineering Journal, 2015, 264:16-23. doi: 10.1016/j.cej.2014.11.074

    [12]

    Dermont G, Bergeron M, Mercier G, et al. Soil washing for metal removal: a review of physical/chemical technologies and field applications[J]. Journal of Hazardous Materials, 2008, 152(1):1-31. doi: 10.1016/j.jhazmat.2007.10.043

    [13]

    郭军康, 李艳萍, 李永涛, 等. 采用草酸和EDTA去除农田土壤中砷和镉污染物[J]. 环境工程, 2019, 37(5):70-75.

    GUO J K, LI Y P, LI Y T, et al. Treatment of arsenic and cadmium in contaminated farmland soil with oxalic acid and EDTA[J]. Environmental Engineering, 2019, 37(5):70-75.

    [14]

    Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals[J]. Aanlytical Chemistry, 1979, 51(7):841-851.

    [15]

    薛清华, 黄凤莲, 梁芳, 等. EDTA/DTPA与柠檬酸混合连续淋洗土壤中镉铅及其对土壤肥力的影响[J]. 矿冶工程, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020

    XUE Q H, HUANG F L, LIANG F, et al. Continuous soil washing with edta/dtpa combined with citric acid for removing cd and pb and its impact on soil fertility[J]. Mining and Metallurgical Engineering, 2019, 39(5):74-78. doi: 10.3969/j.issn.0253-6099.2019.05.020

    [16]

    孙涛, 陆扣萍, 王海龙. 不同淋洗剂和淋洗条件下重金属污染土壤淋洗修复研究进展[J]. 浙江农林大学学报, 2015, 32(1):140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021

    SUN T, LU K P, WANG H L. Advance in washing technology for remediation of heavy metal contaminated soils: effects of eluants and washing conditions[J]. Journal of Zhejiang A&F University, 2015, 32(1):140-149. doi: 10.11833/j.issn.2095-0756.2015.01.021

    [17]

    许超, 夏北城, 林颖. EDTA和柠檬酸对污染土壤中重金属的解吸动力学及其形态的影响[J]. 水土保持学报, 2009, 23(4):146-151.

    XU C, XIA B C, LIN Y. Kinetics of heavy metals desorption by edta and citric in contaminated soil and their redistribution of fractions[J]. Journal of Soil and Water Conservation, 2009, 23(4):146-151.

    [18]

    刘仕翔, 胡三荣, 罗泽娇. EDTA和CA复配淋洗剂对重金属复合污染土壤的淋洗条件研究[J]. 安全与环境工程, 2017, 24(3):77-83.

    LIU S X, HU S R, LUO Z J. Study on compounding edta and ca leaching heavy metals contaminated soil[J]. Safety and Environmental Engineering, 2017, 24(3):77-83.

    [19]

    陈璐, 文方, 程艳, 等. 铅锌尾矿中重金属形态分布与毒性浸出特征研究[J]. 干旱区资源与环境, 2017, 31(3):89-94.

    CHEN L, WEN F, CHENG Y, et al. Characteristics of speciation distribution and toxicity leaching of heavy metals in Pb-Zn tailings[J]. Journal of Arid Land Resources and Environment, 2017, 31(3):89-94.

  • 加载中

(4)

(3)

计量
  • 文章访问数:  2564
  • PDF下载数:  136
  • 施引文献:  0
出版历程
收稿日期:  2020-05-09
修回日期:  2020-06-21
刊出日期:  2022-08-25

目录